Do you want to publish a course? Click here

Strong equivalence of reversible circuits is coNP-complete

173   0   0.0 ( 0 )
 Added by Stephen Jordan
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

It is well-known that deciding equivalence of logic circuits is a coNP-complete problem. As a corollary, the problem of deciding weak equivalence of reversible circuits, i.e. ignoring the ancilla bits, is also coNP-complete. The complexity of deciding strong equivalence, including the ancilla bits, is less obvious and may depend on gate set. Here we use Barringtons theorem to show that deciding strong equivalence of reversible circuits built from the Fredkin gate is coNP-complete. This implies coNP-completeness of deciding strong equivalence for other commonly used universal reversible gate sets, including any gate set that includes the Toffoli or Fredkin gate.



rate research

Read More

In the Nikoli pencil-and-paper game Tatamibari, a puzzle consists of an $m times n$ grid of cells, where each cell possibly contains a clue among +, -, |. The goal is to partition the grid into disjoint rectangles, where every rectangle contains exactly one clue, rectangles containing + are square, rectangles containing - are strictly longer horizontally than vertically, rectangles containing | are strictly longer vertically than horizontally, and no four rectangles share a corner. We prove this puzzle NP-complete, establishing a Nikoli gap of 16 years. Along the way, we introduce a gadget framework for proving hardness of similar puzzles involving area coverage, and show that it applies to an existing NP-hardness proof for Spiral Galaxies. We also present a mathematical puzzle font for Tatamibari.
It has been known for almost three decades that many $mathrm{NP}$-hard optimization problems can be solved in polynomial time when restricted to structures of constant treewidth. In this work we provide the first extension of such results to the quantum setting. We show that given a quantum circuit $C$ with $n$ uninitialized inputs, $mathit{poly}(n)$ gates, and treewidth $t$, one can compute in time $(frac{n}{delta})^{exp(O(t))}$ a classical assignment $yin {0,1}^n$ that maximizes the acceptance probability of $C$ up to a $delta$ additive factor. In particular, our algorithm runs in polynomial time if $t$ is constant and $1/poly(n) < delta < 1$. For unrestricted values of $t$, this problem is known to be complete for the complexity class $mathrm{QCMA}$, a quantum generalization of MA. In contrast, we show that the same problem is $mathrm{NP}$-complete if $t=O(log n)$ even when $delta$ is constant. On the other hand, we show that given a $n$-input quantum circuit $C$ of treewidth $t=O(log n)$, and a constant $delta<1/2$, it is $mathrm{QMA}$-complete to determine whether there exists a quantum state $mid!varphirangle in (mathbb{C}^d)^{otimes n}$ such that the acceptance probability of $Cmid!varphirangle$ is greater than $1-delta$, or whether for every such state $mid!varphirangle$, the acceptance probability of $Cmid!varphirangle$ is less than $delta$. As a consequence, under the widely believed assumption that $mathrm{QMA} eq mathrm{NP}$, we have that quantum witnesses are strictly more powerful than classical witnesses with respect to Merlin-Arthur protocols in which the verifier is a quantum circuit of logarithmic treewidth.
When can $t$ terminal pairs in an $m times n$ grid be connected by $t$ vertex-disjoint paths that cover all vertices of the grid? We prove that this problem is NP-complete. Our hardness result can be compared to two previous NP-hardness proofs: Lynchs 1975 proof without the ``cover all vertices constraint, and Kotsuma and Takenagas 2010 proof when the paths are restricted to have the fewest possible corners within their homotopy class. The latter restriction is a common form of the famous Nikoli puzzle emph{Numberlink}; our problem is another common form of Numberlink, sometimes called emph{Zig-Zag Numberlink} and popularized by the smartphone app emph{Flow Free}.
Given a neural network, training data, and a threshold, it was known that it is NP-hard to find weights for the neural network such that the total error is below the threshold. We determine the algorithmic complexity of this fundamental problem precisely, by showing that it is ER-complete. This means that the problem is equivalent, up to polynomial-time reductions, to deciding whether a system of polynomial equations and inequalities with integer coefficients and real unknowns has a solution. If, as widely expected, ER is strictly larger than NP, our work implies that the problem of training neural networks is not even in NP.
153 - Elmar B~A{P}hler 2010
We study Boolean circuits as a representation of Boolean functions and consider different equivalence, audit, and enumeration problems. For a number of restricted sets of gate types (bases) we obtain efficient algorithms, while for all other gate types we show these problems are at least NP-hard.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا