Do you want to publish a course? Click here

Training Neural Networks is ER-complete

149   0   0.0 ( 0 )
 Added by Tillmann Miltzow
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Given a neural network, training data, and a threshold, it was known that it is NP-hard to find weights for the neural network such that the total error is below the threshold. We determine the algorithmic complexity of this fundamental problem precisely, by showing that it is ER-complete. This means that the problem is equivalent, up to polynomial-time reductions, to deciding whether a system of polynomial equations and inequalities with integer coefficients and real unknowns has a solution. If, as widely expected, ER is strictly larger than NP, our work implies that the problem of training neural networks is not even in NP.



rate research

Read More

In the Nikoli pencil-and-paper game Tatamibari, a puzzle consists of an $m times n$ grid of cells, where each cell possibly contains a clue among +, -, |. The goal is to partition the grid into disjoint rectangles, where every rectangle contains exactly one clue, rectangles containing + are square, rectangles containing - are strictly longer horizontally than vertically, rectangles containing | are strictly longer vertically than horizontally, and no four rectangles share a corner. We prove this puzzle NP-complete, establishing a Nikoli gap of 16 years. Along the way, we introduce a gadget framework for proving hardness of similar puzzles involving area coverage, and show that it applies to an existing NP-hardness proof for Spiral Galaxies. We also present a mathematical puzzle font for Tatamibari.
When can $t$ terminal pairs in an $m times n$ grid be connected by $t$ vertex-disjoint paths that cover all vertices of the grid? We prove that this problem is NP-complete. Our hardness result can be compared to two previous NP-hardness proofs: Lynchs 1975 proof without the ``cover all vertices constraint, and Kotsuma and Takenagas 2010 proof when the paths are restricted to have the fewest possible corners within their homotopy class. The latter restriction is a common form of the famous Nikoli puzzle emph{Numberlink}; our problem is another common form of Numberlink, sometimes called emph{Zig-Zag Numberlink} and popularized by the smartphone app emph{Flow Free}.
174 - Stephen P. Jordan 2013
It is well-known that deciding equivalence of logic circuits is a coNP-complete problem. As a corollary, the problem of deciding weak equivalence of reversible circuits, i.e. ignoring the ancilla bits, is also coNP-complete. The complexity of deciding strong equivalence, including the ancilla bits, is less obvious and may depend on gate set. Here we use Barringtons theorem to show that deciding strong equivalence of reversible circuits built from the Fredkin gate is coNP-complete. This implies coNP-completeness of deciding strong equivalence for other commonly used universal reversible gate sets, including any gate set that includes the Toffoli or Fredkin gate.
We show that the decision problem of determining whether a given (abstract simplicial) $k$-complex has a geometric embedding in $mathbb R^d$ is complete for the Existential Theory of the Reals for all $dgeq 3$ and $kin{d-1,d}$. This implies that the problem is polynomial time equivalent to determining whether a polynomial equation system has a real root. Moreover, this implies NP-hardness and constitutes the first hardness results for the algorithmic problem of geometric embedding (abstract simplicial) complexes.
Training quantum neural networks (QNNs) using gradient-based or gradient-free classical optimisation approaches is severely impacted by the presence of barren plateaus in the cost landscapes. In this paper, we devise a framework for leveraging quantum optimisation algorithms to find optimal parameters of QNNs for certain tasks. To achieve this, we coherently encode the cost function of QNNs onto relative phases of a superposition state in the Hilbert space of the network parameters. The parameters are tuned with an iterative quantum optimisation structure using adaptively selected Hamiltonians. The quantum mechanism of this framework exploits hidden structure in the QNN optimisation problem and hence is expected to provide beyond-Grover speed up, mitigating the barren plateau issue.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا