Do you want to publish a course? Click here

On the Satisfiability of Quantum Circuits of Small Treewidth

128   0   0.0 ( 0 )
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

It has been known for almost three decades that many $mathrm{NP}$-hard optimization problems can be solved in polynomial time when restricted to structures of constant treewidth. In this work we provide the first extension of such results to the quantum setting. We show that given a quantum circuit $C$ with $n$ uninitialized inputs, $mathit{poly}(n)$ gates, and treewidth $t$, one can compute in time $(frac{n}{delta})^{exp(O(t))}$ a classical assignment $yin {0,1}^n$ that maximizes the acceptance probability of $C$ up to a $delta$ additive factor. In particular, our algorithm runs in polynomial time if $t$ is constant and $1/poly(n) < delta < 1$. For unrestricted values of $t$, this problem is known to be complete for the complexity class $mathrm{QCMA}$, a quantum generalization of MA. In contrast, we show that the same problem is $mathrm{NP}$-complete if $t=O(log n)$ even when $delta$ is constant. On the other hand, we show that given a $n$-input quantum circuit $C$ of treewidth $t=O(log n)$, and a constant $delta<1/2$, it is $mathrm{QMA}$-complete to determine whether there exists a quantum state $mid!varphirangle in (mathbb{C}^d)^{otimes n}$ such that the acceptance probability of $Cmid!varphirangle$ is greater than $1-delta$, or whether for every such state $mid!varphirangle$, the acceptance probability of $Cmid!varphirangle$ is less than $delta$. As a consequence, under the widely believed assumption that $mathrm{QMA} eq mathrm{NP}$, we have that quantum witnesses are strictly more powerful than classical witnesses with respect to Merlin-Arthur protocols in which the verifier is a quantum circuit of logarithmic treewidth.



rate research

Read More

We show that any quantum circuit of treewidth $t$, built from $r$-qubit gates, requires at least $Omega(frac{n^{2}}{2^{O(rcdot t)}cdot log^4 n})$ gates to compute the element distinctness function. Our result generalizes a near-quadratic lower bound for quantum formula size obtained by Roychowdhury and Vatan [SIAM J. on Computing, 2001]. The proof of our lower bound follows by an extension of Nev{c}iporuks method to the context of quantum circuits of constant treewidth. This extension is made via a combination of techniques from structural graph theory, tensor-network theory, and the connected-component counting method, which is a classic tool in algebraic geometry.
For Boolean satisfiability problems, the structure of the solution space is characterized by the solution graph, where the vertices are the solutions, and two solutions are connected iff they differ in exactly one variable. In 2006, Gopalan et al. studied connectivity properties of the solution graph and related complexity issues for CSPs, motivated mainly by research on satisfiability algorithms and the satisfiability threshold. They proved dichotomies for the diameter of connected components and for the complexity of the st-connectivity question, and conjectured a trichotomy for the connectivity question. Recently, we were able to establish the trichotomy [arXiv:1312.4524]. Here, we consider connectivity issues of satisfiability problems defined by Boolean circuits and propositional formulas that use gates, resp. connectives, from a fixed set of Boolean functions. We obtain dichotomies for the diameter and the two connectivity problems: on one side, the diameter is linear in the number of variables, and both problems are in P, while on the other side, the diameter can be exponential, and the problems are PSPACE-complete. For partially quantified formulas, we show an analogous dichotomy.
We provide a graphical treatment of SAT and #SAT on equal footing. Instances of #SAT can be represented as tensor networks in a standard way. These tensor networks are interpreted by diagrams of the ZH-calculus: a system to reason about tensors over C in terms of diagrams built from simple generators, in which computation may be carried out by transformations of diagrams alone. In general, nodes of ZH diagrams take parameters over C which determine the tensor coefficients; for the standard representation of #SAT instances, the coefficients take the value 0 or 1. Then, by choosing the coefficients of a diagram to range over B, we represent the corresponding instance of SAT. Thus, by interpreting a diagram either over the boolean semiring or the complex numbers, we instantiate either the decision or counting version of the problem. We find that for classes known to be in P, such as 2SAT and #XORSAT, the existence of appropriate rewrite rules allows for efficient simplification of the diagram, producing the solution in polynomial time. In contrast, for classes known to be NP-complete, such as 3SAT, or #P-complete, such as #2SAT, the corresponding rewrite rules introduce hyperedges to the diagrams, in numbers which are not easily bounded above by a polynomial. This diagrammatic approach unifies the diagnosis of the complexity of CSPs and #CSPs and shows promise in aiding tensor network contraction-based algorithms.
168 - Stephen P. Jordan 2013
It is well-known that deciding equivalence of logic circuits is a coNP-complete problem. As a corollary, the problem of deciding weak equivalence of reversible circuits, i.e. ignoring the ancilla bits, is also coNP-complete. The complexity of deciding strong equivalence, including the ancilla bits, is less obvious and may depend on gate set. Here we use Barringtons theorem to show that deciding strong equivalence of reversible circuits built from the Fredkin gate is coNP-complete. This implies coNP-completeness of deciding strong equivalence for other commonly used universal reversible gate sets, including any gate set that includes the Toffoli or Fredkin gate.
63 - H. Buhrman 1999
We present a number of results related to quantum algorithms with small error probability and quantum algorithms that are zero-error. First, we give a tight analysis of the trade-offs between the number of queries of quantum search algorithms, their error probability, the size of the search space, and the number of solutions in this space. Using this, we deduce new lower and upper bounds for quant
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا