No Arabic abstract
The effects of static electric field on the dynamics of lysozyme and its hydration water have been investigated by means of incoherent quasi-elastic neutron scattering (QENS). Measurements were performed on lysozyme samples, hydrated respectively with heavy water (D2O) to capture the protein dynamics, and with light water (H2O), to probe the dynamics of the hydration shell, in the temperature range from 210 $<$ T $<$ 260 K. The hydration fraction in both cases was about $sim$ 0.38 gram of water per gram of dry protein. The field strengths investigated were respectively 0 kV/mm and 2 kV/mm (2 10$^6$ V/m) for the protein hydrated with D2O and 0 kV and 1 kV/mm for the H2O hydrated counterpart. While the overall internal protons dynamics of the protein appears to be unaffected by the application of electric field up to 2 kV/mm, likely due to the stronger intra-molecular interactions, there is also no appreciable quantitative enhancement of the diffusive dynamics of the hydration water, as would be anticipated based on our recent observations in water confined in silica pores under field values of 2.5 kV/mm. This may be due to the difference in surface interactions between water and the two adsorption hosts (silica and protein), or to the existence of a critical threshold field value Ec $sim$ 2-3 kV/mm for increased molecular diffusion, for which electrical breakdown is a limitation for our sample.
We report the diffusion of water molecules confined in the pores of folded silica materials (FSM-12 with average pore diameter of $sim$ 16 AA), measured by means of quasielastic neutron scattering using the cold neutron chopper spectrometer (CNCS). The goal is to investigate the effect of electric field on the previously observed fast component of nano-confined water. The measurements were taken at temperatures between 220 K and 245 K, and at two electric field values, 0 kV/mm and 2 kV/mm. Similar to the recently observed electric field induced enhancement of the slow translational motion of confined water, there is a an equally important impact of the field on the faster diffusion.
Water shapes and defines the properties of biological systems. Therefore, understanding the nature of the mutual interaction between water and biological systems is of primary importance for a proper assessment of biological activity and the development of new drugs and vaccines. A handy way to characterize the interactions between biological systems and water is to analyze their impact on water density and dynamics in the proximity of the interfaces. It is well established that water bulk density and dynamical properties are recovered at distances in the order of $sim1$~nm from the surface of biological systems. Such evidence led to the definition of emph{hydration} water as the thin layer of water covering the surface of biological systems and affecting-defining their properties and functionality. Here, we review some of our latest contributions showing that phospholipid membranes affect the structural properties and the hydrogen bond network of water at greater distances than the commonly evoked $sim1$~nm from the membrane surface. Our results imply that the concept of hydration water should be revised or extended, and pave the way to a deeper understanding of the mutual interactions between water and biological systems.
Graphene nanochannels are relevant for their possible applications, as in water purification, and for the challenge of understanding how they change the properties of confined liquids. Here, we use all-atom molecular dynamics simulations to investigate water confined in an open graphene slit-pore as a function of its width $w$, down to sub-nm scale. We find that the water translational and rotational dynamics exhibits an oscillatory dependence on $w$, due to water layering. The oscillations in dynamics correlate with those in hydration pressure, which can be negative (hydrophobic attraction), or as high as $sim 1$ GPa, as seen in the experiments. At pore widths commensurable with full layers (around $7.0$ AA and $9.5$ AA for one and two layers, respectively), the free energy of the system has minima, and the hydration pressure vanishes. These are the separations at which the dynamics of confined water slows down. Nevertheless, the hydration pressure vanishes also where the free energy has maxima, i.e., for those pore-widths which are incommensurable with the formation of well-separated layers, as $wsimeq 8.0$ AA. Around these values of $w$, the dynamics is faster than in bulk, with water squeezed out from the pore. This behavior has not been observed for simple liquids under confinement, either for water in closed nano-pores. The decomposition of the free energy clarifies the origins of the dynamics speedups and slowdowns. In particular, we find that the nature of the slowdown depends on the number of water layers: for two layers, it is due to the internal energy contribution, as in simple liquids, while for one layer, it has an entropic origin possibly due to the existence of a hydrogen-bond network in water. Our results shed light on the mechanisms ruling the dynamics and thermodynamics of confined water and are a guide for future experiments.
Employing X-ray photon correlation spectroscopy we measure the kinetics and dynamics of a pressure-induced liquid-liquid phase separation (LLPS) in a water-lysozyme solution. Scattering invariants and kinetic information provide evidence that the system reaches the phase boundary upon pressure-induced LLPS with no sign of arrest. The coarsening slows down with increasing quench depths. The $g_2$-functions display a two-step decay with a gradually increasing non-ergodicity parameter typical for gelation. We observe fast superdiffusive ($gamma geq 3/2$) and slow subdiffusive ($gamma < 0.6$) motion associated with fast viscoelastic fluctuations of the network and a slow viscous coarsening process, respectively. The dynamics age linear with time $tau propto t_mathrm{w}$ and we observe the onset of viscoelastic relaxation for deeper quenches. Our results suggest that the protein solution gels upon reaching the phase boundary.
We report a study of the effects of pressure on the diffusivity of water molecules confined in single- wall carbon nanotubes (SWNT) with average mean pore diameter of 16 Angstroms. The measurements were carried out using high-resolution neutron scattering, over the temperature range 220 < T < 260 K, and at two pressure conditions: ambient and elevated pressure. The high pressure data were collected at constant volume on cooling, with P varying from 1.92 kbar at temperature T = 260 K to 1.85 kbar at T = 220 K. Analysis of the observed dynamic structure factor S(Q, E) reveals the presence of two relaxation processes, a faster diffusion component (FC) associated with the motion of caged or restricted molecules, and a slower component arising from the free water molecules diffusing within the SWNT matrix. While the temperature dependence of the slow relaxation time exhibits a Vogel-Fulcher-Tammann law and is non-Arrhenius in nature, the faster component follows an Arrhenius exponential law at both pressure conditions. The application of pressure remarkably slows down the overall molecular dynamics, in agreement with previous observations, but most notably affects the slow relaxation. The faster relaxation shows marginal or no change with pressure within the experimental conditions.