Do you want to publish a course? Click here

Influence of the magnetic material on tunneling magnetoresistance and spin-transfer torque in tunnel junctions: Ab initio studies

183   0   0.0 ( 0 )
 Added by Christian Franz
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dependence of tunneling magnetoresistance and spin-transfer torque in FeCo/MgO/FeCo tunnel junctions on the Co concentration and the bias voltage are investigated ab initio. We find that the tunneling magnetoresistance decreases with the Co concentration in contradiction with previous calculations but in agreement with recent experiments. This dependence is explained from bulk properties of the alloys. By using a realistic description of the disorder in the alloys we can show that even small amounts of disorder lead to a drastic drop in the tunneling magnetoresistance. This provides a quantitative explanation of the difference between calculated and measured values. The spin-transfer torque shows a linear voltage dependence for the in-plane component and a quadratic for the out-of-plane component for all concentrations at small bias voltages. In particular, the linear slope of the in-plane torque is independent of the concentration. For high bias voltages the in-plane torque shows a strong nonlinear deviation from the linear slope for high Co concentrations. This is explained from the same effects which govern the tunneling magnetoresistance.



rate research

Read More

We calculate the spin-transfer torque in Fe/MgO/Fe tunnel junctions and compare the results to those for all-metallic junctions. We show that the spin-transfer torque is interfacial in the ferromagnetic layer to a greater degree than in all-metallic junctions. This result originates in the half metallic behavior of Fe for the $Delta_1$ states at the Brillouin zone center; in contrast to all-metallic structures, dephasing does not play an important role. We further show that it is possible to get a component of the torque that is out of the plane of the magnetizations and that is linear in the bias. However, observation of such a torque requires highly ideal samples. In samples with typical interfacial roughness, the torque is similar to that in all-metallic multilayers, although for different reasons.
This Letter presents ab initio calculations of the magneto-thermoelectric power (MTEP) and of the spin-Seebeck coefficient in MgO based tunnel junctions with Fe and Co leads. In addition, the normal thermopower is calculated and gives for pure Fe and Co an quantitative agreement with experiments. Consequently, the calculated values in tunnel junctions are a good estimation of upper limits. In particular, spin-Seebeck coefficients of more than 100 mu V/K are possible. The MTEP ratio exceed several 1000% and depends strongly on temperature. In the case of Fe leads the MTEP ratio diverges even to infinity at certain temperatures. The spin-Seebeck coefficient as a function of temperature shows a non-trivial dependence. For Fe/MgO/Fe even the sign of the coefficient changes with temperature.
We found a strong influence of the composition of the magnetic material on the temperature dependence of the tunneling magneto-Seebeck effect in $MgO$ based tunnel junctions. We use textit{ab initio} alloy theory to consider different $Fe_xCo_{1-x}$ alloys for the ferromagnetic layer. Even a small change of the composition leads to strong changes in the magnitude or even in the sign of the tunneling magneto-Seebeck effect. This can explain differences between recent experimental results. In addition, changing the barrier thickness from six to ten monolayers of $MgO$ leads also to a non-trivial change of the temperature dependence. Our results emphasize that the tunneling magneto-Seebeck effect depends very crucially and is very sensitive to material parameters and show that further experimental and theoretical investigations are necessary.
The thermal spin-transfer torque (TSTT) is an effect to switch the magnetic free layer in a magnetic tunnel junction by a temperature gradient only. We present ab initio calculations of the TSTT. In particular, we discuss the influence of magnetic layer composition by considering $text{Fe}_text{x}text{Co}_{text{1-x}}$ alloys. Further, we compare the TSTT to the bias voltage driven STT and discuss the requirements for a possible thermal switching. For example, only for very thin barriers of 3 monolayers MgO a thermal switching is imaginable. However, even for such a thin barrier the TSTT is still too small for switching at the moment and further optimization is needed. In particular, the TSTT strongly depends on the composition of the ferromagentic layer. In our current study it turns out that at the chosen thickness of the ferromagnetic layer pure Fe gives the highest thermal spin-transfer torque.
The effects of the spin-orbit interaction on the tunneling magnetoresistance of ferromagnet/semiconductor/normal metal tunnel junctions are investigated. Analytical expressions for the tunneling anisotropic magnetoresistance (TAMR) are derived within an approximation in which the dependence of the magnetoresistance on the magnetization orientation in the ferromagnet originates from the interference between Bychkov-Rashba and Dresselhaus spin-orbit couplings that appear at junction interfaces and in the tunneling region. We also investigate the transport properties of ferromagnet/semiconductor/ferromagnet tunnel junctions and show that in such structures the spin-orbit interaction leads not only to the TAMR effect but also to the anisotropy of the conventional tunneling magnetoresistance (TMR). The resulting anisotropic tunneling magnetoresistance (ATMR) depends on the absolute magnetization directions in the ferromagnets. Within the proposed model, depending on the magnetization directions in the ferromagnets, the interplay of Bychkov-Rashba and Dresselhaus spin-orbit couplings produces differences between the rates of transmitted and reflected spins at the ferromagnet/seminconductor interfaces, which results in an anisotropic local density of states at the Fermi surface and in the TAMR and ATMR effects. Model calculations for Fe/GaAs/Fe tunnel junctions are presented. Furthermore, based on rather general symmetry considerations, we deduce the form of the magnetoresistance dependence on the absolute orientations of the magnetizations in the ferromagnets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا