Do you want to publish a course? Click here

A normal-pressure MWPC for beam diagnostics at RIBLL2

133   0   0.0 ( 0 )
 Added by Shuwen Tang
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

A normal pressure MWPC for beam diagnostics at RIBLL2 has been developed, which has a sensitive area of 80 mm$times$80 mm and consists of three-layer wire planes. The anode plane is designed with a wider frame to reduce the discharge and without using protection wires. The detector has been tested with a $^{55}$Fe X-ray source and a 200 MeV/u $^{12}$C beam from CSRm. A position resolution better than 250 $upmu$m along the anode wires and a detection efficiency higher than 90% have been achieved.

rate research

Read More

To improve the ability of particle identification of the RIBLL2 separator at the HIRFL-CSR complex, a new high-performance detector for measuring fragment starting time and position at the F1 dispersive plane has been constructed and installed, and a method for achieving precise Br{ho} determination has been developed using the experimentally derived ion-optical transfer matrix elements from the measured position and ToF information. Using the high-performance detectors and the precise Br{ho} determination method, the fragments produced by the fragmentation of 78Kr at 300 MeV/nucleon were identified clearly at the RIBLL2-ETF under full momentum acceptance. The atomic number Z resolution of {sigma}Z~0.19 and the mass-to-charge ratio A/Q resolution of {sigma}A/Q~5.8e-3 were obtained for the 75As33+ fragment. This great improvement will increase the collection efficiency of exotic nuclei, extend the range of nuclei of interest from the A<40 mass region up to the A~80 mass region, and promote the development of radioactive nuclear beam experiments at the RIBLL2 separator.
The LPMWPC can be used as the {Delta}E detector for the low-energy charged particle detection. In order to increase the transmittance, the wires were adopted as the cathode. This work investigated the LPMWPC signal characteristics of this configuration and measured the gas gain with a mixture of 90%Ar and 10% CO2 from 1E3 to 1E5 Pa. From the test, the second pulse after the avalanche signal was observed, which proved to be caused by the ions drifting near the cathode wire.
The RIBLL2 in-flight separator at IMP, the secondary beam line between two storage rings at the blue{uwave{Heavy Ion Research Facility in Lanzhou (HIRFL-CSR)}}, has been commissioned to study the rare-isotope beam (RIB) physics at around 300 MeV/nucleon for the first time, in combination of the external target facility (ETF). The unambiguous particle identification in mass and charge states for $^{18}$O and $^{40}$Ar fragments has been achieved in recent experiments. A full realization of RIBLL2 will open many potentials to address important RIB physics problems at around 300 MeV/nucleon.
A polarized atomic beam source was developed for the polarized internal storage-cell gas target at the magnet spectrometer ANKE of COSY-Julich. The intensities of the beams injected into the storage cell, measured with a compression tube, are $7.5cdot 10^{16}$ hydrogen atoms/s (two hyperfine states) and $3.9cdot 10^{16}$ deuterium atoms/s (three hyperfine states). For the hydrogen beam the achieved vector polarizations are $p_{rm z}approxpm0.92$. For the deuterium beam, the obtained combinations of vector and tensor ($p_{rm zz}$) polarizations are $p_{rm z}approxpm 0.90$ (with a constant $p_{rm zz}approx +0.86$), and $p_{rm zz}=+0.90$ or $p_{rm zz}=-1.71$ (both with vanishing $p_{rm z}$). The paper includes a detailed technical description of the apparatus and of the investigations performed during the development.
A beam imaging detector was developed by coupling a multi-strip anode with delay line readout to an E$times$B microchannel plate (MCP) detector. This detector is capable of measuring the incident position of the beam particles in one-dimension. To assess the spatial resolution, the detector was illuminated by an $alpha$-source with an intervening mask that consists of a series of precisely-machined slits. The measured spatial resolution was 520$mu$m FWHM, which was improved to 413$mu$m FWHM by performing an FFT of the signals, rejecting spurious signals on the delay line, and requiring a minimum signal amplitude. This measured spatial resolution of 413$mu$m FWHM corresponds to an intrinsic resolution of 334$mu$m FWHM when the effect of the finite slit width is de-convoluted. To understand the measured resolution, the performance of the detector is simulated with the ion-trajectory code SIMION.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا