No Arabic abstract
A polarized atomic beam source was developed for the polarized internal storage-cell gas target at the magnet spectrometer ANKE of COSY-Julich. The intensities of the beams injected into the storage cell, measured with a compression tube, are $7.5cdot 10^{16}$ hydrogen atoms/s (two hyperfine states) and $3.9cdot 10^{16}$ deuterium atoms/s (three hyperfine states). For the hydrogen beam the achieved vector polarizations are $p_{rm z}approxpm0.92$. For the deuterium beam, the obtained combinations of vector and tensor ($p_{rm zz}$) polarizations are $p_{rm z}approxpm 0.90$ (with a constant $p_{rm zz}approx +0.86$), and $p_{rm zz}=+0.90$ or $p_{rm zz}=-1.71$ (both with vanishing $p_{rm z}$). The paper includes a detailed technical description of the apparatus and of the investigations performed during the development.
Some of the important results from the COSY-Juelich spin programme are summarised. These include the measurement of the deuteron beam momentum through the excitation of a depolarising resonance, which allowed the mass of the eta-meson to be determined to high precision. The charge exchange of polarised deuterons on hydrogen gave rise to a detailed study of the spin dependence of large angle neutron-proton elastic scattering amplitudes. The measurements of the cross section and analysing powers for pion production in both pp and pn collisions at 353 MeV could be described very successfully in terms of a partial wave decomposition.
We report on our efforts to optimize the geometry of neutron moderators and converters for the TRIUMF UltraCold Advanced Neutron (TUCAN) source using MCNP simulations. It will use an existing spallation neutron source driven by a 19.3 kW proton beam delivered by TRIUMFs 520 MeV cyclotron. Spallation neutrons will be moderated in heavy water at room temperature and in liquid deuterium at 20 K, and then superthermally converted to ultracold neutrons in superfluid, isotopically purified $^4$He. The helium will be cooled by a $^3$He fridge through a $^3$He-$^4$He heat exchanger. The optimization took into account a range of engineering and safety requirements and guided the detailed design of the source. The predicted ultracold-neutron density delivered to a typical experiment is maximized for a production volume of 27 L, achieving a production rate of $1.4 cdot 10^7$ s$^{-1}$ to $1.6 cdot 10^7$ s$^{-1}$ with a heat load of 8.1 W. At that heat load, the fridge can cool the superfluid helium to 1.1 K, resulting in a storage lifetime for ultracold neutrons in the source of about 30 s. The most critical performance parameters are the choice of cold moderator and the volume, thickness, and material of the vessel containing the superfluid helium. The source is scheduled to be installed in 2021 and will enable the TUCAN collaboration to measure the electric dipole moment of the neutron with a sensitivity of $10^{-27}$ e cm.
The first photon beam was successfully produced by laser Compton backscattering at the LEPS2 beamline, which was newly constructed at SPring-8 for the purpose to increase the beam intensity one order of magnitude more than that of the LEPS experiments and to achieve the large acceptance coverage with high resolution detectors. The BGOegg electromagnetic calorimeter with associated detectors are being set up at the LEPS2 experimental building for the physics programs, including the searches for $eta$-bound nuclei and highly excited baryon resonances. In parallel to the BGOegg experiments, the LEPS2 charged particle spectrometer will be prepared inside the 1 Tesla solenoidal magnet, transported from the BNL-E949 experiment.
The Neutrinos at the Main Injector (NuMI) beamline will deliver an intense muon neutrino beam by focusing a beam of mesons into a long evacuated decay volume. We have built 4 arrays of ionization chambers to monitor the neutrino beam direction and quality. The arrays are located at 4 stations downstream of the decay volume, and measure the remnant hadron beam and tertiary muons produced along with neutrinos in meson decays.
The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was $184(32)$ UCN/cm$^3$, a four-fold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be $39(7)$ UCN/cm$^3$, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of $sigma(d_n) = 3times 10^{-27}$ $ecdot$cm.