No Arabic abstract
This manuscript is the outcome of the subgroup ``PDFs, shadowing and $pA$ collisions from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC. In addition to the experimental parameters for $pA$ collisions at the LHC, the issues discussed are factorization in nuclear collisions, nuclear parton distributions (nPDFs), hard probes as the benchmark tests of factorization in $pA$ collisions at the LHC, and semi-hard probes as observables with potentially large nuclear effects. Also, novel QCD phenomena in $pA$ collisions at the LHC are considered. The importance of the $pA$ program at the LHC is emphasized.
Extraction of the strange quark PDF is a long-standing puzzle. We use the nCTEQ nPDFs with uncertainties to study the impact of the LHC W/Z production data on both the flavor differentiation and nuclear corrections; this complements the information from neutrino-DIS data. As the proton flavor determination is dependent on nuclear corrections (from heavy target DIS, for example), LHC heavy ion measurements can also help improve proton PDFs. We introduce a new implementation of the nCTEQ code (nCTEQ++) based on C++ which has a modular strucure and enables us to easily integrate programs such as HOPPET, APPLgrid, and MCFM. Using ApplGrids generated from MCFM, we use nCTEQ++ to perform a preliminary fit including the pPb LHC W/Z vector boson data.
Various pion and photon production mechanisms in high-energy nuclear collisions at RHIC and LHC are discussed. Comparison with RHIC data is done whenever possible. The prospect of using electromagnetic probes to characterize quark-gluon plasma formation is assessed.
We study the diffusion of charm quarks in the early stage of high energy nuclear collisions at the RHIC and the LHC. The main novelty of the present study is the introduction of the color current carried by the heavy quarks that propagate in the evolving Glasma (Ev-Glasma), that is responsible of the energy loss via polarization of the medium. We compute the transverse momentum broadening, $sigma_p$, of charm in the pre-thermalization stage, and the impact of the diffusion on the nuclear modification factor in nucleus-nucleus collisions. The net effect of energy loss is marginal in the pre-thermalization stage. The study is completed by the calculation of coordinate spreading, $sigma_x$, and by a comparison with Langevin dynamics. $sigma_p$ in Ev-Glasma overshoots the result of standard Langevin dynamics at the end of the pre-hydro regime. We interpret this as a result of memory of the color force acting on the charm quarks that implies $sigma_ppropto t^2$. Moreover, $sigma_xpropto t^2 $ in the pre-hydro stage shows that the charm quark in the Ev-Glasma is in the regime of ballistic diffusion.
There are interesting parallels between the physics of heavy ion collisions and cosmology. Both systems are out-of-equilibrium and relativistic fluid dynamics plays an important role for their theoretical description. From a comparison one can draw interesting conclusions for both sides. For heavy ion physics it could be rewarding to attempt a theoretical description of fluid perturbations similar to cosmological perturbation theory. In the context of late time cosmology, it could be interesting to study dissipative properties such as shear and bulk viscosity and corresponding relaxation times in more detail. Knowledge and experience from heavy ion physics could help to constrain the microscopic properties of dark matter from observational knowledge of the cosmological fluid properties.
Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non- linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program at the LHC would provide a set of measurements allowing for unprecedented tests of the factorization assumption underlying global nPDF fits.