Do you want to publish a course? Click here

The paucity of globular clusters around the field elliptical NGC 7507

141   0   0.0 ( 0 )
 Added by Juan Pablo Caso
 Publication date 2013
  fields Physics
and research's language is English
 Authors J. P. Caso




Ask ChatGPT about the research

Context: There is strong evidence that globular cluster systems (GCSs) of massive galaxies are largely assembled by infall/accretion processes. Therefore, we expect the GCSs of isolated elliptical galaxies to be poor. Alhough not completely isolated, NGC 7507 is a massive field elliptical galaxy with an apparently very low dark matter content. Aims: We determine the richness, the colour distribution, and the structural properties of the GCS of NGC 7507. Methods: We perform wide-field Washington photometry with data obtained with the MOSAIC II camera at the 4m-Blanco telescope, CTIO. Results: The GCS is very poor with S_N ~ 0.6. We identify three subpopulations with peaks at (C-T1) colours of 1.21, 1.42, and 1.72. The bluest population may represent the old, metal-poor component. This interpretation is supported by its shallow density profile. The red population is more concentrated, resembling the galaxy light. The intermediate-colour population is strongly peaked in colour and we interpret this population as the signature of a starburst, whose age depends on the metallicity, but should be quite old, since no signatures of a merger are identifiable. In addition, we find a main sequence in the stellar foreground population, which we attribute to the Sagittarius dwarf tidal stream. Conclusions: The extraordinarily poor GCS of NGC 7507, a massive elliptical galaxy, is an illustration of how important the environmental conditions are for producing rich GCSs.



rate research

Read More

We present a kinematic analysis of the globular cluster(GC) system in the giant elliptical galaxy (gE) NGC 4636 in the Virgo cluster. Using the photometric and spectroscopic database of 238 GCs, we have investigated the kinematics of the GC system. The NGC 4636 GC system shows weak overall rotation, which is dominated by the red GCs. However, both the blue GCs and red GCs show some rotation in the inner region at R<4.3. The velocity dispersion for all the GCs is derived to be sigma_p = 225{+12-9} km/s. The velocity dispersion for the blue GCs (sig=251 km/s) is slightly larger than that for the red GCs (sig=205 km/s). The velocity dispersions for the blue GCs about the mean velocity and about the best fit rotation curve have a significant variation depending on the galactocentric radius. Comparison of observed stellar and GC velocity dispersion profiles with the velocity dispersion profiles calculated from the stellar mass profile shows that the mass-to-light ratio should increase as the galactocentric distance increases, indicating the existence of an extended dark matter halo. From the comparison of the observed GC velocity dispersion profiles and the velocity dispersion profiles calculated for the X-ray mass profiles in the literature, we find that the orbit of the GC system is tangential, and that the orbit of the red GCs is slightly more tangential than that of the blue GCs. We compare the GC kinematics of NGC 4636 with those of other six gEs, finding that the kinematic properties of the GCs are diverse among gEs. We find several correlations between the kinematics of the GCs and the global parameters of their host galaxies. We discuss the implication of the results for the formation models of the GC system in gEs, and suggest a mixture scenario for the origin of the GCs in gEs.
106 - Michael Pierce 2005
We have obtained Gemini/GMOS spectra for 22 GCs associated with NGC 3379. We derive ages, metallicities and alpha-element abundance ratios from simple stellar population models using the multi-index chi^2 minimisation method of Proctor & Sansom (2002). All of these GCs are found to be consistent with old ages, i.e. >10 Gyr, with a wide range of metallicities. A trend of decreasing alpha-element abundance ratio with increasing metallicity is indicated. The projected velocity dispersion of the GC system is consistent with being constant with radius. Non-parametric, isotropic models require a significant increase in the mass-to-light ratio at large radii. This result is in contrast to that of Romanowsky et al. (2003) who find a decrease in the velocity dispersion profile as determined from planetary nebulae. Our constant dispersion requires a normal sized dark halo, although without anisotropic models we cannot rigorously determine the dark halo mass. A two-sided chi^2 test over all radii, gives a 2 sigma difference between the mass profile derived from our GCs compared to the PN-derived mass model of Romanowsky et al. (2003). However, if we restrict our analysis to radii beyond one effective radius and test if the GC velocity dispersion is consistently higher, we determine a >3 sigma difference between the mass models, and hence favor the conclusion that NGC 3379 does indeed have dark matter at large radii in its halo. (abridged)
116 - Michael Pierce 2006
NGC 4649 (M60) is one of a handful of giant Virgo ellipticals. We have obtained Gemini/GMOS spectra for 38 GCs associated with this galaxy. Applying the multi-index chi^2 minimisation technique of Proctor & Sansom (2002) with the single stellar population models of Thomas, Maraston & Korn (2004) we derive ages, metallicities and alpha-element abundance ratios. We find several young (2--3 Gyr old) super-solar metallicity GCs, while the majority are old (>10 Gyrs), spanning a range of metallicities from solar to [Z/H]=-2. At least two of these young GCs are at large projected radii of 17-20 kpc. The galaxy itself shows no obvious signs of a recent starburst, interaction or merger. A trend of decreasing alpha-element ratio with increasing metallicity is found.
As part of our current programme to test LCDM predictions for dark matter (DM) haloes using extended kinematical observations of early-type galaxies, we present a dynamical analysis of the bright elliptical galaxy NGC 4374 (M84) based on ~450 Planetary Nebulae (PNe) velocities from the PN.Spectrograph, along with extended long-slit stellar kinematics. This is the first such analysis of a galaxy from our survey with a radially constant velocity dispersion profile. We find that the spatial and kinematical distributions of the PNe agree with the field stars in the region of overlap. The velocity kurtosis is consistent with zero at almost all radii. We construct a series of Jeans models, fitting both velocity dispersion and kurtosis to help break the mass-anisotropy degeneracy. Our mass models include DM halos either with shallow cores or with central cusps as predicted by cosmological simulations - along with the novel introduction in this context of adiabatic halo contraction from baryon infall. Both classes of models confirm a very massive dark halo around NGC 4374, demonstrating that PN kinematics data are well able to detect such haloes when present. Considering the default cosmological mass model, we confirm earlier suggestions that bright galaxies tend to have halo concentrations higher than LCDM predictions, but this is found to be solved if either a Salpeter IMF or adiabatic contraction with a Kroupa IMF is assumed. Thus for the first time a case is found where the PN dynamics may well be consistent with a standard dark matter halo. A cored halo can also fit the data, and prefers a stellar mass consistent with a Salpeter IMF. The less dramatic dark matter content found in lower-luminosity ordinary ellipticals suggests a bimodality in the halo properties which may be produced by divergent baryonic effects during their assembly histories.
Massive galaxies are thought to form in two phases: an initial, early collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark matter haloes. The globular cluster systems of such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (red) clusters, while more metal-poor (blue) clusters are brought in by the later accretion of less massive satellites. This formation process is thought to lead the creation of the multimodal optical colour distributions seen in the globular cluster systems of massive galaxies. Here we report HST/ACS observations of the massive relic galaxy NGC 1277 and its globular clusters, a nearby unevolved example of a high redshift red nugget. The g-z cluster colour distribution shows that the globular cluster system of the galaxy is unimodal and uniquely red. This is in strong contrast to normal galaxies of similar and larger stellar mass, whose cluster systems always exhibit (and are generally dominated by) blue clusters. We argue that the globular cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse and use analytic merger trees to show that the total stellar mass accretion is likely less than ~ 10 %. These results confirm that NGC 1277 is a genuine relic galaxy and show that the blue, metal-poor globular clusters constitute an accreted population in present day massive galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا