Do you want to publish a course? Click here

Gemini/GMOS Spectra of Globular Clusters in the Virgo Giant Elliptical NGC 4649

117   0   0.0 ( 0 )
 Added by Michael Pierce
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

NGC 4649 (M60) is one of a handful of giant Virgo ellipticals. We have obtained Gemini/GMOS spectra for 38 GCs associated with this galaxy. Applying the multi-index chi^2 minimisation technique of Proctor & Sansom (2002) with the single stellar population models of Thomas, Maraston & Korn (2004) we derive ages, metallicities and alpha-element abundance ratios. We find several young (2--3 Gyr old) super-solar metallicity GCs, while the majority are old (>10 Gyrs), spanning a range of metallicities from solar to [Z/H]=-2. At least two of these young GCs are at large projected radii of 17-20 kpc. The galaxy itself shows no obvious signs of a recent starburst, interaction or merger. A trend of decreasing alpha-element ratio with increasing metallicity is found.



rate research

Read More

We present Sloan g and i imaging from the GMOS instrument on the Gemini North telescope for the globular cluster (GC) system around the Virgo galaxy NGC 4649 (M60). Our three pointings, taken in good seeing conditions, cover an area of about 90 sq. arcmins. We detect 2,151 unresolved sources. Applying colour and magnitude selection criteria to this source list gives 995 candidate GCs that is greater than 90% complete to a magnitude of i = 23.6, with little contamination from background galaxies. We find fewer than half a dozen potential Ultra Compact Dwarf galaxies around NGC 4649. Foreground extinction from the nearby spiral NGC 4647 is limited to be A_V < 0.1. We confirm the bimodality in the GC colour distribution found by earlier work using HST/WFPC2 imaging. As is commonly seen in other galaxies, the red GCs are concentrated towards the centre of the galaxy, having a steeper number density profile than the blue GC subpopulation. The varying ratio of red-to-blue GCs with radius can largely explain the overall GC system colour gradient. The underlying galaxy starlight has a similar density profile slope and colour to the red GCs. This suggests a direct connection between the galaxy field stars and the red GC subpopulation. We estimate a total GC population of 3700 +/- 900, with the uncertainty dominated by the extrapolation to larger radii than observed. This total number corresponds to a specific frequency S_N = 4.1 +/- 1.0. Future work will present properties derived from GMOS spectra of the NGC 4649 GCs.
106 - Michael Pierce 2005
We have obtained Gemini/GMOS spectra for 22 GCs associated with NGC 3379. We derive ages, metallicities and alpha-element abundance ratios from simple stellar population models using the multi-index chi^2 minimisation method of Proctor & Sansom (2002). All of these GCs are found to be consistent with old ages, i.e. >10 Gyr, with a wide range of metallicities. A trend of decreasing alpha-element abundance ratio with increasing metallicity is indicated. The projected velocity dispersion of the GC system is consistent with being constant with radius. Non-parametric, isotropic models require a significant increase in the mass-to-light ratio at large radii. This result is in contrast to that of Romanowsky et al. (2003) who find a decrease in the velocity dispersion profile as determined from planetary nebulae. Our constant dispersion requires a normal sized dark halo, although without anisotropic models we cannot rigorously determine the dark halo mass. A two-sided chi^2 test over all radii, gives a 2 sigma difference between the mass profile derived from our GCs compared to the PN-derived mass model of Romanowsky et al. (2003). However, if we restrict our analysis to radii beyond one effective radius and test if the GC velocity dispersion is consistently higher, we determine a >3 sigma difference between the mass models, and hence favor the conclusion that NGC 3379 does indeed have dark matter at large radii in its halo. (abridged)
We present a technique to extract ultra-deep diffuse-light spectra from the standard multi-object spectroscopic observations used to investigate extragalactic globular cluster (GC) systems. This technique allows a clean extraction of the spectrum of the host galaxy diffuse light from the same slitlets as the GC targets. We show the utility of the method for investigating the kinematics and stellar populations of galaxies at radii much greater than usually probed in longslit studies, at no additional expense in terms of telescope time. To demonstrate this technique we present Gemini/GMOS spectroscopy of 29 GCs associated with the elliptical galaxy NGC 3923. We compare the measured stellar population parameters of the GC system with those of the spheroid of NGC 3923 at the same projected radii, and find the GCs to have old ages (> 10 Gyr), [alpha/Fe]~0.3 and a range of metallicities running from [Z/H] = -1.8 to +0.35. The diffuse light of the galaxy is found to have ages, metallicities and [alpha/Fe] abundance ratios indistinguishable from those of the red GCs.
We present a kinematic analysis of the globular cluster(GC) system in the giant elliptical galaxy (gE) NGC 4636 in the Virgo cluster. Using the photometric and spectroscopic database of 238 GCs, we have investigated the kinematics of the GC system. The NGC 4636 GC system shows weak overall rotation, which is dominated by the red GCs. However, both the blue GCs and red GCs show some rotation in the inner region at R<4.3. The velocity dispersion for all the GCs is derived to be sigma_p = 225{+12-9} km/s. The velocity dispersion for the blue GCs (sig=251 km/s) is slightly larger than that for the red GCs (sig=205 km/s). The velocity dispersions for the blue GCs about the mean velocity and about the best fit rotation curve have a significant variation depending on the galactocentric radius. Comparison of observed stellar and GC velocity dispersion profiles with the velocity dispersion profiles calculated from the stellar mass profile shows that the mass-to-light ratio should increase as the galactocentric distance increases, indicating the existence of an extended dark matter halo. From the comparison of the observed GC velocity dispersion profiles and the velocity dispersion profiles calculated for the X-ray mass profiles in the literature, we find that the orbit of the GC system is tangential, and that the orbit of the red GCs is slightly more tangential than that of the blue GCs. We compare the GC kinematics of NGC 4636 with those of other six gEs, finding that the kinematic properties of the GCs are diverse among gEs. We find several correlations between the kinematics of the GCs and the global parameters of their host galaxies. We discuss the implication of the results for the formation models of the GC system in gEs, and suggest a mixture scenario for the origin of the GCs in gEs.
We present a spectroscopic study of the globular clusters (GCs) in the giant elliptical galaxy NGC 4636 in the Virgo cluster. We selected target GC candidates using the Washington photometry derived from the deep CCD images taken at the KPNO 4m. Then we obtained the spectra of 164 target objects in the field of NGC 4636 using the Multi-Object Spectroscopy (MOS) mode of Faint Object Camera and Spectrograph (FOCAS) on the SUBARU 8.2m Telescope. We have measured the velocities for 122 objects: 105 GCs in NGC 4636, the nucleus of NGC 4636, 11 foreground stars, 2 background galaxies, and 3 probable intracluster GCs in the Virgo cluster. The GCs in NGC 4636 are located in the projected galactocentric radius within 10arcmin (corresponding to 43 kpc). The measured velocities for the GCs range from 300km/s to 1600km/s, with a mean value of 932_{-22}^{+25} km/s, which is in good agreement with the velocity for the nucleus of NGC 4636, 928pm 45 km/s. The velocity dispersion of the GCs in NGC 4636 is derived to be 231_{-17}^{+15} km/s and the velocity dispersion of the blue GCs is slightly larger than that of the red GCs. Combining our results with data in the literature, we produce a master catalog of radial velocities for 238 GCs in NGC 4636. The velocity dispersion of the GCs in the master catalog is found to be 225_{-9}^{+12} km/s for the entire sample, 251_{-12}^{+18} km/s for 108 blue GCs, and 205_{-13}^{+11} km/s for 130 red GCs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا