Do you want to publish a course? Click here

The PN.S Elliptical Galaxy Survey: a standard LCDM halo around NGC 4374?

423   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

As part of our current programme to test LCDM predictions for dark matter (DM) haloes using extended kinematical observations of early-type galaxies, we present a dynamical analysis of the bright elliptical galaxy NGC 4374 (M84) based on ~450 Planetary Nebulae (PNe) velocities from the PN.Spectrograph, along with extended long-slit stellar kinematics. This is the first such analysis of a galaxy from our survey with a radially constant velocity dispersion profile. We find that the spatial and kinematical distributions of the PNe agree with the field stars in the region of overlap. The velocity kurtosis is consistent with zero at almost all radii. We construct a series of Jeans models, fitting both velocity dispersion and kurtosis to help break the mass-anisotropy degeneracy. Our mass models include DM halos either with shallow cores or with central cusps as predicted by cosmological simulations - along with the novel introduction in this context of adiabatic halo contraction from baryon infall. Both classes of models confirm a very massive dark halo around NGC 4374, demonstrating that PN kinematics data are well able to detect such haloes when present. Considering the default cosmological mass model, we confirm earlier suggestions that bright galaxies tend to have halo concentrations higher than LCDM predictions, but this is found to be solved if either a Salpeter IMF or adiabatic contraction with a Kroupa IMF is assumed. Thus for the first time a case is found where the PN dynamics may well be consistent with a standard dark matter halo. A cored halo can also fit the data, and prefers a stellar mass consistent with a Salpeter IMF. The less dramatic dark matter content found in lower-luminosity ordinary ellipticals suggests a bimodality in the halo properties which may be produced by divergent baryonic effects during their assembly histories.



rate research

Read More

We present new Planetary Nebula Spectrograph observations of the ordinary elliptical galaxy NGC 4494, resulting in positions and velocities of 255 PNe out to 7 effective radii (25 kpc). We also present new wide-field surface photometry from MMT/Megacam, and long-slit stellar kinematics from VLT/FORS2. The spatial and kinematical distributions of the PNe agree with the field stars in the region of overlap. The mean rotation is relatively low, with a possible kinematic axis twist outside 1 Re. The velocity dispersion profile declines with radius, though not very steeply, down to ~70 km/s at the last data point. We have constructed spherical dynamical models of the system, including Jeans analyses with multi-component LCDM-motivated galaxies as well as logarithmic potentials. These models include special attention to orbital anisotropy, which we constrain using fourth-order velocity moments. Given several different sets of modelling methods and assumptions, we find consistent results for the mass profile within the radial range constrained by the data. Some dark matter (DM) is required by the data; our best-fit solution has a radially anisotropic stellar halo, a plausible stellar mass-to-light ratio, and a DM halo with an unexpectedly low central density. We find that this result does not substantially change with a flattened axisymmetric model. Taken together with other results for galaxy halo masses, we find suggestions for a puzzling pattern wherein most intermediate-luminosity galaxies have very low concentration halos, while some high-mass ellipticals have very high concentrations. We discuss some possible implications of these results for DM and galaxy formation.
We study the concentration of dark matter halos and its evolution in N-body simulations of the standard LCDM cosmology. The results presented in this paper are based on 4 large N-body simulations with about 10 billion particles each: the Millennium-I and II, Bolshoi, and MultiDark simulations. The MultiDark (or BigBolshoi) simulation is introduced in this paper. This suite of simulations with high mass resolution over a large volume allows us to compute with unprecedented accuracy the concentration over a large range of scales (about six orders of magnitude in mass), which constitutes the state-of-the-art of our current knowledge on this basic property of dark matter halos in the LCDM cosmology. We find that there is consistency among the different simulation data sets. We confirm a novel feature for halo concentrations at high redshifts: a flattening and upturn with increasing mass. The concentration c(M,z) as a function of mass and the redshift and for different cosmological parameters shows a remarkably complex pattern. However, when expressed in terms of the linear rms fluctuation of the density field sigma(M,z), the halo concentration c(sigma) shows a nearly-universal simple U-shaped behaviour with a minimum at a well defined scale at sigma=0.71. Yet, some small dependences with redshift and cosmology still remain. At the high-mass end (sigma < 1) the median halo kinematic profiles show large signatures of infall and highly radial orbits. This c-sigma(M,z) relation can be accurately parametrized and provides an analytical model for the dependence of concentration on halo mass. When applied to galaxy clusters, our estimates of concentrations are substantially larger -- by a factor up to 1.5 -- than previous results from smaller simulations, and are in much better agreement with results of observations. (abridged)
We present results from Planetary Nebula Spectrograph (PN.S) observations of the elliptical galaxy NGC 3379 and a description of the data reduction pipeline. We detected 214 planetary nebulae of which 191 are ascribed to NGC 3379, and 23 to the companion galaxy NGC 3384. Comparison with data from the literature show that the PN.S velocities have an internal error of <20km/s and a possible offset of similar magnitude. We present the results of kinematic modelling and show that the PN kinematics are consistent with absorption-line data in the region where they overlap. The resulting combined kinematic data set, running from the center of NGC 3379 out to more than seven effective radii (Reff), reveals a mean rotation velocity that is small compared to the random velocities, and a dispersion profile that declines rapidly with radius. From a series of Jeans dynamical models we find the B-band mass-to-light ratio inside 5 Reff to be 8 to 12 in solar units, and the dark matter fraction inside this radius to be less than 40%. We compare these and other results of dynamical analysis with those of dark-matter-dominated merger simulations, finding that significant discrepancies remain, reiterating the question of whether NGC 3379 has the kind of dark matter halo that the current LambdaCDM paradigm requires.
174 - L. Darriba , J. M. Solanes 2010
We present an adaptation of the standard scenario of disk-galaxy formation to the concordant LCDM cosmology aimed to derive analytical expressions for the scale length and rotation speed of present-day disks that form within four different, cosmologically motivated protogalactic dark matter halo-density profiles. We invoke a standard galaxy-formation model that includes virial equilibrium of spherical dark halos, specific angular momentum conservation during gas cooling, and adiabatic halo response to the gas inflow. The mean mass-fraction and mass-to-light ratio of the central stellar disk are treated as free parameters whose values are tuned to match the zero points of the observed size-luminosity and circular speed-luminosity relations of galaxies. We supply analytical formulas for the characteristic size and rotation speed of disks built inside Einasto r^{1/6}, Hernquist, Burkert, and Navarro-Frenk-White dark matter halos. These expressions match simultaneously the observed zero points and slopes of the different correlations that can be built in the RVL space of disk galaxies from plausible values of the galaxy- and star-formation efficiencies.
126 - J. P. Caso 2013
Context: There is strong evidence that globular cluster systems (GCSs) of massive galaxies are largely assembled by infall/accretion processes. Therefore, we expect the GCSs of isolated elliptical galaxies to be poor. Alhough not completely isolated, NGC 7507 is a massive field elliptical galaxy with an apparently very low dark matter content. Aims: We determine the richness, the colour distribution, and the structural properties of the GCS of NGC 7507. Methods: We perform wide-field Washington photometry with data obtained with the MOSAIC II camera at the 4m-Blanco telescope, CTIO. Results: The GCS is very poor with S_N ~ 0.6. We identify three subpopulations with peaks at (C-T1) colours of 1.21, 1.42, and 1.72. The bluest population may represent the old, metal-poor component. This interpretation is supported by its shallow density profile. The red population is more concentrated, resembling the galaxy light. The intermediate-colour population is strongly peaked in colour and we interpret this population as the signature of a starburst, whose age depends on the metallicity, but should be quite old, since no signatures of a merger are identifiable. In addition, we find a main sequence in the stellar foreground population, which we attribute to the Sagittarius dwarf tidal stream. Conclusions: The extraordinarily poor GCS of NGC 7507, a massive elliptical galaxy, is an illustration of how important the environmental conditions are for producing rich GCSs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا