Do you want to publish a course? Click here

Kepler-62: A five-planet system with planets of 1.4 and 1.6 Earth radii in the Habitable Zone

184   0   0.0 ( 0 )
 Added by Eric Agol
 Publication date 2013
  fields Physics
and research's language is English
 Authors W. J. Borucki




Ask ChatGPT about the research

We present the detection of five planets -- Kepler-62b, c, d, e, and f -- of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii, orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4 and 267.3 days, respectively. The outermost planets (Kepler-62e & -62f) are super-Earth-size (1.25 < planet radius/earth radius < 2.0) planets in the habitable zone (HZ) of their host star, receiving 1.2 +- 0.2 and 0.41 +- 0.05 times the solar flux at Earths orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 Gyr suggest that both planets could be solid: either with a rocky composition or composed of mostly solid water in their bulk.



rate research

Read More

The Kepler-1647 is a binary system with two Sun-type stars (approximately 1.22 and 0.97 Solar mass). It has the most massive circumbinary planet (1.52 Jupiter mass) with the longest orbital period (1,107.6 days) detected by the Kepler probe and is located within the habitable zone (HZ) of the system. In this work, we investigated the ability to form and house an Earth-sized planet within its HZ. First, we computed the limits of its HZ and performed numerical stability tests within that region. We found that HZ has three sub-regions that show stability, one internal, one co-orbital, and external to the host planet Kepler-1647b. Within the limits of these three regions, we performed numerical simulations of planetary formation. In the regions inner and outer to the planet, we used two different density profiles to explore different conditions of formation. In the co-orbital region, we used eight different values of total disc mass. We showed that many resonances are located within regions causing much of the disc material to be ejected before a planet is formed. Thus, the system might have two asteroid belts with Kirkwood gaps, similar to the Solar Systems main belt of asteroids. The co-orbital region proved to be extremely sensitive, not allowing the planet formation, but showing that this binary system has the capacity to have Trojan bodies. Finally, we looked for regions of stability for an Earth-sized moon. We found that there is stability for a moon with this mass up to 0.4 Hills radius from the host planet.
A search of the time-series photometry from NASAs Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{sigma} upper limit of 124 MEarth, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262K for a planet in Kepler-22bs orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the Habitable Zone of any star other than the Sun.
We present an investigation of twelve candidate transiting planets from Kepler with orbital periods ranging from 34 to 207 days, selected from initial indications that they are small and potentially in the habitable zone (HZ) of their parent stars. Few of these objects are known. The expected Doppler signals are too small to confirm them by demonstrating that their masses are in the planetary regime. Here we verify their planetary nature by validating them statistically using the BLENDER technique, which simulates large numbers of false positives and compares the resulting light curves with the Kepler photometry. This analysis was supplemented with new follow-up observations (high-resolution optical and near-infrared spectroscopy, adaptive optics imaging, and speckle interferometry), as well as an analysis of the flux centroids. For eleven of them (KOI-0571.05, 1422.04, 1422.05, 2529.02, 3255.01, 3284.01, 4005.01, 4087.01, 4622.01, 4742.01, and 4745.01) we show that the likelihood they are true planets is far greater than that of a false positive, to a confidence level of 99.73% (3 sigma) or higher. For KOI-4427.01 the confidence level is about 99.2% (2.6 sigma). With our accurate characterization of the GKM host stars, the derived planetary radii range from 1.1 to 2.7 R_Earth. All twelve objects are confirmed to be in the HZ, and nine are small enough to be rocky. Excluding three of them that have been previously validated by others, our study doubles the number of known rocky planets in the HZ. KOI-3284.01 (Kepler-438b) and KOI-4742.01 (Kepler-442b) are the planets most similar to the Earth discovered to date when considering their size and incident flux jointly.
137 - K. von Braun 2011
The bright star 55 Cancri is known to host five planets, including a transiting super-Earth. We use the CHARA Array to directly determine the following of 55 Cncs stellar astrophysical parameters: $R=0.943 pm 0.010 R_{odot}$, $T_{rm EFF} = 5196 pm 24$ K. Planet 55 Cnc f ($M sin i = 0.155 M_{Jupiter}$) spends the majority of the duration of its elliptical orbit in the circumstellar habitable zone (0.67--1.32 AU) where, with moderate greenhouse heating, it could harbor liquid water. Our determination of 55 Cancris stellar radius allows for a model-independent calculation of the physical diameter of the transiting super-Earth 55 Cnc e ($simeq 2.1 R_{earth}$), which, depending on the assumed literature value of planetary mass, implies a bulk density of 0.76 $rho_{earth}$ or 1.07 $rho_{earth}$.
In this work is investigated the possibility of close-binary star systems having Earth-size planets within their habitable zones. First, we selected all known close-binary systems with confirmed planets (totaling 22 systems) to calculate the boundaries of their respective habitable zones (HZ). However, only eight systems had all the data necessary for the computation of the HZ. Then, we numerically explored the stability within the habitable zones for each one of the eight systems using test particles. From the results, we selected five systems that have stable regions inside the habitable zones (HZ), namely Kepler-34, 35, 38, 413 and 453. For these five cases of systems with stable regions in the HZ, we perform a series of numerical simulations for planet formation considering disks composed of planetary embryos and planetesimals, with two distinct density profiles, in addition to the stars and host planets of each system. We found that in the case of Kepler-34 and 453 systems no Earth-size planet is formed within the habitable zones. Although planets with Earth-like masses were formed in the Kepler-453, but they were outside the HZ. In contrast, for Kepler-35 and 38 systems, the results showed that potentially habitable planets are formed in all simulations. In the case of the Kepler-413 system, in just one simulation a terrestrial planet was formed within the habitable zone.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا