No Arabic abstract
Planar functions in odd characteristic were introduced by Dembowski and Ostrom in order to construct finite projective planes in 1968. They were also used in the constructions of DES-like iterated ciphers, error-correcting codes, and signal sets. Recently, a new notion of pseudo-planar functions in even characteristic was proposed by Zhou. These new pseudo-planar functions, as an analogue of planar functions in odd characteristic, also bring about finite projective planes. There are three known infinite families of pseudo-planar monomial functions constructed by Schmidt and Zhou, and Scherr and Zieve. In this paper, three new classes of pseudo-planar binomials are provided. Moreover, we find that each pseudo-planar function gives an association scheme which is defined on a Galois ring.
We show that the maximum number of pairwise non-overlapping $k$-rich lenses (lenses formed by at least $k$ circles) in an arrangement of $n$ circles in the plane is $Oleft(frac{n^{3/2}log{(n/k^3)}}{k^{5/2}} + frac{n}{k} right)$, and the sum of the degrees of the lenses of such a family (where the degree of a lens is the number of circles that form it) is $Oleft(frac{n^{3/2}log{(n/k^3)}}{k^{3/2}} + nright)$. Two independent proofs of these bounds are given, each interesting in its own right (so we believe). We then show that these bounds lead to the known bound of Agarwal et al. (JACM 2004) and Marcus and Tardos (JCTA 2006) on the number of point-circle incidences in the plane. Extensions to families of more general algebraic curves and some other related problems are also considered.
A Latin square of order $n$ is an $n times n$ array filled with $n$ symbols such that each symbol appears only once in every row or column and a transversal is a collection of cells which do not share the same row, column or symbol. The study of Latin squares goes back more than 200 years to the work of Euler. One of the most famous open problems in this area is a conjecture of Ryser-Brualdi-Stein from 60s which says that every Latin square of order $ntimes n$ contains a transversal of order $n-1$. In this paper we prove the existence of a transversal of order $n-O(log{n}/log{log{n}})$, improving the celebrated bound of $n-O(log^2n)$ by Hatami and Shor. Our approach (different from that of Hatami-Shor) is quite general and gives several other applications as well. We obtain a new lower bound on a 40 year old conjecture of Brouwer on the maximum matching in Steiner triple systems, showing that every such system of order $n$ is guaranteed to have a matching of size $n/3-O(log{n}/log{log{n}})$. This substantially improves the current best result of Alon, Kim and Spencer which has the error term of order $n^{1/2+o(1)}$. Finally, we also show that $O(nlog{n}/log{log{n}})$ many symbols in Latin arrays suffice to guarantee a full transversal, improving on previously known bound of $n^{2-varepsilon}$. The proofs combine in a novel way the semirandom method together with the robust expansion properties of edge coloured pseudorandom graphs to show the existence of a rainbow matching covering all but $O(log n/log{log{n}})$ vertices. All previous results, based on the semi-random method, left uncovered at least $Omega(n^{alpha})$ (for some constant $alpha$) vertices.
The main goal of the paper is to establish a sufficient condition for a two-valenced association scheme to be schurian and separable. To this end, an analog of the Desargues theorem is introduced for a noncommutative geometry defined by the scheme in question. It turns out that if the geometry has enough many Desarguesian configurations, then under a technical condition the scheme is schurian and separable. This result enables us to give short proofs for known statements on the schurity and separability of quasi-thin and pseudocyclic schemes. Moreover, by the same technique we prove a new result: given a prime $p$, any ${1,p}$-scheme with thin residue isomorphic to an elementary abelian $p$-group of rank greater than two, is schurian and separable.
We find precise asymptotic estimates for the number of planar maps and graphs with a condition on the minimum degree, and properties of random graphs from these classes. In particular we show that the size of the largest tree attached to the core of a random planar graph is of order c log(n) for an explicit constant c. These results provide new information on the structure of random planar graphs.
This paper summarizes the results at the present moment about singularities with respect to the Mather-Jacobian log discrepancies over algebraically closed field of arbitrary characteristic. The basic point is the Inversion of Adjunction with respect to Mather-Jacobian discrepancies holds in arbitrary characteristic. Based on this fact we will reduce many geometric properties of the singularities into the problem on jet schemes and try to avoid discussions which are distinctive for characteristic 0.