No Arabic abstract
A Latin square of order $n$ is an $n times n$ array filled with $n$ symbols such that each symbol appears only once in every row or column and a transversal is a collection of cells which do not share the same row, column or symbol. The study of Latin squares goes back more than 200 years to the work of Euler. One of the most famous open problems in this area is a conjecture of Ryser-Brualdi-Stein from 60s which says that every Latin square of order $ntimes n$ contains a transversal of order $n-1$. In this paper we prove the existence of a transversal of order $n-O(log{n}/log{log{n}})$, improving the celebrated bound of $n-O(log^2n)$ by Hatami and Shor. Our approach (different from that of Hatami-Shor) is quite general and gives several other applications as well. We obtain a new lower bound on a 40 year old conjecture of Brouwer on the maximum matching in Steiner triple systems, showing that every such system of order $n$ is guaranteed to have a matching of size $n/3-O(log{n}/log{log{n}})$. This substantially improves the current best result of Alon, Kim and Spencer which has the error term of order $n^{1/2+o(1)}$. Finally, we also show that $O(nlog{n}/log{log{n}})$ many symbols in Latin arrays suffice to guarantee a full transversal, improving on previously known bound of $n^{2-varepsilon}$. The proofs combine in a novel way the semirandom method together with the robust expansion properties of edge coloured pseudorandom graphs to show the existence of a rainbow matching covering all but $O(log n/log{log{n}})$ vertices. All previous results, based on the semi-random method, left uncovered at least $Omega(n^{alpha})$ (for some constant $alpha$) vertices.
In this paper, we establish several results related to Crouzeixs conjecture. We show that the conjecture holds for contractions with eigenvalues that are sufficiently well-separated. This separation is measured by the so-called separation constant, which is defined in terms of the pseudohyperbolic metric. Moreover, we study general properties of related extremal functions and associated vectors. Throughout, compressions of the shift serve as illustrating examples which also allow for refined results.
A Gallai-coloring (Gallai-$k$-coloring) is an edge-coloring (with colors from ${1, 2, ldots, k}$) of a complete graph without rainbow triangles. Given a graph $H$ and a positive integer $k$, the $k$-colored Gallai-Ramsey number $GR_k(H)$ is the minimum integer $n$ such that every Gallai-$k$-coloring of the complete graph $K_n$ contains a monochromatic copy of $H$. In this paper, we consider two extremal problems related to Gallai-$k$-colorings. First, we determine upper and lower bounds for the maximum number of edges that are not contained in any rainbow triangle or monochromatic triangle in a $k$-edge-coloring of $K_n$. Second, for $ngeq GR_k(K_3)$, we determine upper and lower bounds for the minimum number of monochromatic triangles in a Gallai-$k$-coloring of $K_{n}$, yielding the exact value for $k=3$. Furthermore, we determine the Gallai-Ramsey number $GR_k(K_4+e)$ for the graph on five vertices consisting of a $K_4$ with a pendant edge.
We show that the maximum number of pairwise non-overlapping $k$-rich lenses (lenses formed by at least $k$ circles) in an arrangement of $n$ circles in the plane is $Oleft(frac{n^{3/2}log{(n/k^3)}}{k^{5/2}} + frac{n}{k} right)$, and the sum of the degrees of the lenses of such a family (where the degree of a lens is the number of circles that form it) is $Oleft(frac{n^{3/2}log{(n/k^3)}}{k^{3/2}} + nright)$. Two independent proofs of these bounds are given, each interesting in its own right (so we believe). We then show that these bounds lead to the known bound of Agarwal et al. (JACM 2004) and Marcus and Tardos (JCTA 2006) on the number of point-circle incidences in the plane. Extensions to families of more general algebraic curves and some other related problems are also considered.
Let $t$ be an integer such that $tgeq 2$. Let $K_{2,t}^{(3)}$ denote the triple system consisting of the $2t$ triples ${a,x_i,y_i}$, ${b,x_i,y_i}$ for $1 le i le t$, where the elements $a, b, x_1, x_2, ldots, x_t,$ $y_1, y_2, ldots, y_t$ are all distinct. Let $ex(n,K_{2,t}^{(3)})$ denote the maximum size of a triple system on $n$ elements that does not contain $K_{2,t}^{(3)}$. This function was studied by Mubayi and Verstraete, where the special case $t=2$ was a problem of ErdH{o}s that was studied by various authors. Mubayi and Verstraete proved that $ex(n,K_{2,t}^{(3)})<t^4binom{n}{2}$ and that for infinitely many $n$, $ex(n,K_{2,t}^{(3)})geq frac{2t-1}{3} binom{n}{2}$. These bounds together with a standard argument show that $g(t):=lim_{nto infty} ex(n,K_{2,t}^{(3)})/binom{n}{2}$ exists and that [frac{2t-1}{3}leq g(t)leq t^4.] Addressing the question of Mubayi and Verstraete on the growth rate of $g(t)$, we prove that as $t to infty$, [g(t) = Theta(t^{1+o(1)}).]
We apply the Discharging Method to prove the 1,2,3-Conjecture and the 1,2-Conjecture for graphs with maximum average degree less than 8/3. Stronger results on these conjectures have been proved, but this is the first application of discharging to them, and the structure theorems and reducibility results are of independent interest.