Do you want to publish a course? Click here

Comment on Spatial Coherence and Optical Beam Shifts

202   0   0.0 ( 0 )
 Added by Li-Gang Wang
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

This comment is to show that our simulation data, based on our theory and method in Ref. [J. Phys. B 41, 055401 (2008)], are also in agreement with the experimental data presented for $D_{p}-D_{s}$ in Ref. [Phys. Rev. Lett. textbf{109}, 213901 (2012)]. We also demonstrate how to show the effect of spatial coherence on the GH shifts in this comment, therefore we disagree with the claims in Ref. [Phys. Rev. Lett. textbf{109}, 213901 (2012)].



rate research

Read More

233 - Li-Gang Wang 2011
It is shown that the spatial Goos-Hanchen shift is greatly affected by spatial coherence. A typical example is given.
Coherence properties and wavelength of light sources are indispensable for optical coherence microscopy/tomography as they greatly influence the signal to noise ratio, axial resolution, and penetration depth of the system. In the present letter, we investigated the longitudinal spatial coherence properties of the pseudo-thermal light source (PTS) as a function of spot size at the diffuser plane, which is controlled by translating microscope objective lens towards or away from the diffuser plane. The axial resolution of PTS is found to be maximum ~ 13 microns for the beam spot size of 3.5 mm at the diffuser plane. The change in the axial resolution of the system as the spot size is increased at the diffuser plane is further confirmed by performing experiments on standard gauge blocks of height difference of 15 microns. Thus, by appropriately choosing the beam spot size at the diffuser plane, any monochromatic laser light source depending on the biological window can be utilized to obtain high axial-resolution with large penetration depth and speckle-free tomographic images of multilayered biological specimens irrespective of the source temporal coherence length. In addition, PTS could be an attractive alternative light source for achieving high axial-resolution without needing chromatic aberration corrected optics and dispersion-compensation mechanism, unlike conventional setups.
We describe an experimental technique to generate a quasi-monochromatic field with any arbitrary spatial coherence properties that can be described by the cross-spectral density function, $W(mathbf{r_1,r_2})$. This is done by using a dynamic binary amplitude grating generated by a digital micromirror device (DMD) to rapidly alternate between a set of coherent fields, creating an incoherent mix of modes that represent the coherent mode decomposition of the desired $W(mathbf{r_1,r_2})$. This method was then demonstrated experimentally by interfering two plane waves and then spatially varying the coherent between these two modes such that the interference fringe visibility was shown to vary spatially between the two beams in an arbitrary and prescribed way.
Despite the fact that incandescent sources are usually spatially incoherent, it has been known for some time that a proper design of a thermal source can modify its spatial coherence. A natural question is whether it is possible to extend this analysis to electroluminescence and photoluminescence. A theoretical framework is needed to explore these properties. In this paper, we extend a general coherence-absorption relation valid at equilibrium to two non-equilibrium cases: luminescent bodies and anisothermal bodies. We then use this relation to analyse the differences between the isothermal and anisothermal cases.
Optical diffraction tomography (ODT) is a three-dimensional (3D) label-free imaging technique. The 3D refractive index distribution of a sample can be reconstructed from multiple two-dimensional optical field images via ODT. Herein, we introduce a temporally low-coherence ODT technique using a ferroelectric liquid crystal spatial light modulator (FLC SLM). The fast binary-phase modulation provided by the FLC SLM ensures a high spatiotemporal resolution with considerably reduced coherent noise. We demonstrate the performance of the proposed system using various samples, including colloidal microspheres and live epithelial cells.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا