Do you want to publish a course? Click here

Experimental generation of an optical field with arbitrary spatial coherence properties

143   0   0.0 ( 0 )
 Added by Brandon Rodenburg
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe an experimental technique to generate a quasi-monochromatic field with any arbitrary spatial coherence properties that can be described by the cross-spectral density function, $W(mathbf{r_1,r_2})$. This is done by using a dynamic binary amplitude grating generated by a digital micromirror device (DMD) to rapidly alternate between a set of coherent fields, creating an incoherent mix of modes that represent the coherent mode decomposition of the desired $W(mathbf{r_1,r_2})$. This method was then demonstrated experimentally by interfering two plane waves and then spatially varying the coherent between these two modes such that the interference fringe visibility was shown to vary spatially between the two beams in an arbitrary and prescribed way.



rate research

Read More

Recently, a spatiotemporal optical vortex (STOV) with a transverse orbital angular momentum (OAM) has been generated from coherent ultrafast pulses using mode-locked lasers. In contrast, we demonstrate theoretically and experimentally that a STOV can be generated from a light source with partial temporal coherence with fluctuating temporal phase. By eliminating the need of mode-locked laser sources, the partially coherent STOV will serve as a convenient and cost-effective transverse OAM source.
215 - Li-Gang Wang , Shi-Yao Zhu , 2013
This comment is to show that our simulation data, based on our theory and method in Ref. [J. Phys. B 41, 055401 (2008)], are also in agreement with the experimental data presented for $D_{p}-D_{s}$ in Ref. [Phys. Rev. Lett. textbf{109}, 213901 (2012)]. We also demonstrate how to show the effect of spatial coherence on the GH shifts in this comment, therefore we disagree with the claims in Ref. [Phys. Rev. Lett. textbf{109}, 213901 (2012)].
Due to their unique ability to maintain an intensity distribution upon propagation, non-diffracting light fields are used extensively in various areas of science, including optical tweezers, nonlinear optics and quantum optics, in applications where complex transverse field distributions are required. However, the number and type of rigorously non-diffracting beams is severely limited because their symmetry is dictated by one of the coordinate system where the Helmholtz equation governing beam propagation is separable. Here, we demonstrate a powerful technique that allows the generation of a rich variety of quasi-non-diffracting optical beams featuring nearly arbitrary intensity distributions in the transverse plane. These can be readily engineered via modifications of the angular spectrum of the beam in order to meet the requirements of particular applications. Such beams are not rigorously non-diffracting but they maintain their shape over large distances, which may be tuned by varying the width of the angular spectrum. We report the generation of unique spiral patterns and patterns involving arbitrary combinations of truncated harmonic, Bessel, Mathieu, or parabolic beams occupying different spatial domains. Optical trapping experiments illustrate the opto-mechanical properties of such beams.
The experimental characterization of the spatial and temporal coherence properties of the free-electron laser in Hamburg (FLASH) at a wavelength of 8.0 nm is presented. Double pinhole diffraction patterns of single femtosecond pulses focused to a size of about 10 microns by 10 microns were measured. A transverse coherence length of 6.2 microns in the horizontal and 8.7 microns in the vertical direction was determined from the most coherent pulses. Using a split and delay unit the coherence time of the pulses produced in the same operation conditions of FLASH was measured to be 1.75 fs. From our experiment we estimated the degeneracy parameter of the FLASH beam to be on the order of $10^{10}$ to $10^{11}$, which exceeds the values of this parameter at any other source in the same energy range by many orders of magnitude.
345 - H. Nakamura 1999
The finite-difference time-domain (FDTD) method is employed to solve the three dimensional Maxwell equation for the situation of near-field microscopy using a sub-wavelength aperture. Experimental result on unexpected high spatial resolution is reproduced by our computer simulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا