Do you want to publish a course? Click here

Harmonic and Dirac oscillators in a (2+1)-dimensional noncommutative space

174   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English
 Authors F. Vega




Ask ChatGPT about the research

We study the Harmonic and Dirac Oscillator problem extended to a three-dimensional noncom- mutative space where the noncommutativity is induced by a shift of the dynamical variables with generators of SL(2;R) in a unitary irreducible representation. The Hilbert space gets the structure of a direct product with the representation space as a factor, where there exist operators which realize the algebra of Lorentz transformations. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters, finding no constraints between coordinates and momenta noncom- mutativity parameters. Since the representation space of the unitary irreducible representations SL(2;R) can be realized in terms of spaces of square-integrable functions, we conclude that these models are equivalent to quantum mechanical models of particles living in a space with an additional compact dimension. PACS: 03.65.-w; 11.30.Cp; 02.40.Gh



rate research

Read More

167 - Janos Balog 2014
We present an exact two-particle solution of the Currie-Hill equations of Predictive Relativistic Mechanics in $1 + 1$ dimensional Minkowski space. The instantaneous accelerations are given in terms of elementary functions depending on the relative particle position and velocities. The general solution of the equations of motion is given and by studying the global phase space of this system it is shown that this is a subspace of the full kinematic phase space.
188 - M. Mohadesi , B. Mirza 2004
We study the Dirac and the klein-Gordon oscillators in a noncommutative space. It is shown that the Klein-Gordon oscillator in a noncommutative space has a similar behaviour to the dynamics of a particle in a commutative space and in a constant magnetic field. The Dirac oscillator in a noncommutative space has a similar equation to the equation of motion for a relativistic fermion in a commutative space and in a magnetic field, however a new exotic term appears, which implies that a charged fermion in a noncommutative space has an electric dipole moment.
We interpret, in the realm of relativistic quantum field theory, the tangential operator given by Coleman, Mandula as an appropriate coordinate operator. The investigation shows that the operator generates a Snyder-like noncommutative spacetime with a minimal length that is given by the mass. By using this operator to define a noncommutative spacetime, we obtain a Poincare invariant noncommutative spacetime and in addition solve the soccer-ball problem. Moreover, from recent progress in deformation theory we extract the idea how to obtain, in a physical and mathematical well-defined manner, an emerging noncommutative spacetime. This is done by a strict deformation quantization known as Rieffel deformation (or warped convolutions). The result is a noncommutative spacetime combining a Snyder and a Moyal-Weyl type of noncommutativity that in addition behaves covariant under transformations of the textbf{whole} Poincare group.
We introduce a framework in noncommutative geometry consisting of a $*$-algebra $mathcal A$, a bimodule $Omega^1$ endowed with a derivation $mathcal Ato Omega^1$ and with a Hermitian structure $Omega^1otimes bar{Omega}^1to mathcal A$ (a noncommutative Kahler form), and a cyclic 1-cochain $mathcal Ato mathbb C$ whose coboundary is determined by the previous structures. These data give moment map equations on the space of connections on an arbitrary finitely-generated projective $mathcal A$-module. As particular cases, we obtain a large class of equations in algebra (Kings equations for representations of quivers, including ADHM equations), in classical gauge theory (Hermitian Yang-Mills equations, Hitchin equations, Bogomolny and Nahm equations, etc.), as well as in noncommutative gauge theory by Connes, Douglas and Schwarz. We also discuss Nekrasovs beautiful proposal for re-interpreting noncommutative instantons on $mathbb{C}^nsimeq mathbb{R}^{2n}$ as infinite-dimensional solutions of Kings equation $$sum_{i=1}^n [T_i^dagger, T_i]=hbarcdot ncdotmathrm{Id}_{mathcal H}$$ where $mathcal H$ is a Hilbert space completion of a finitely-generated $mathbb C[T_1,dots,T_n]$-module (e.g. an ideal of finite codimension).
We study the stationary problem of a charged Dirac particle in (2+1) dimensions in the presence of a uniform magnetic field B and a singular magnetic tube of flux Phi = 2 pi kappa/e. The rotational invariance of this configuration implies that the subspaces of definite angular momentum l+1/2 are invariant under the action of the Hamiltonian H. We show that, for l different from the integer part of kappa, the restriction of H to these subspaces, H_l is essentially self-adjoint, while for l equal to the integer part of kappa, H_l admits a one-parameter family of self-adjoint extensions (SAE). In the later case, the functions in the domain of H_l are singular (but square-integrable) at the origin, their behavior being dictated by the value of the parameter gamma that identifies the SAE. We also determine the spectrum of the Hamiltonian as a function of kappa and gamma, as well as its closure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا