Do you want to publish a course? Click here

The Klein-Gordon and the Dirac oscillators in a noncommutative space

189   0   0.0 ( 0 )
 Added by Behrouz Mirza
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

We study the Dirac and the klein-Gordon oscillators in a noncommutative space. It is shown that the Klein-Gordon oscillator in a noncommutative space has a similar behaviour to the dynamics of a particle in a commutative space and in a constant magnetic field. The Dirac oscillator in a noncommutative space has a similar equation to the equation of motion for a relativistic fermion in a commutative space and in a magnetic field, however a new exotic term appears, which implies that a charged fermion in a noncommutative space has an electric dipole moment.



rate research

Read More

184 - F. Vega 2013
We study the Harmonic and Dirac Oscillator problem extended to a three-dimensional noncom- mutative space where the noncommutativity is induced by a shift of the dynamical variables with generators of SL(2;R) in a unitary irreducible representation. The Hilbert space gets the structure of a direct product with the representation space as a factor, where there exist operators which realize the algebra of Lorentz transformations. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters, finding no constraints between coordinates and momenta noncom- mutativity parameters. Since the representation space of the unitary irreducible representations SL(2;R) can be realized in terms of spaces of square-integrable functions, we conclude that these models are equivalent to quantum mechanical models of particles living in a space with an additional compact dimension. PACS: 03.65.-w; 11.30.Cp; 02.40.Gh
We study the thermodynamic quantities such as the Helmholtz free energy, the mean energy and the specific heat for both the Klein-Gordon, and Dirac equations. Our analyze includes two main subsections: ($i$) statistical functions for the Klein-Gordon equation with a linear potential having Lorentz vector, and Lorentz scalar parts ($ii$) thermodynamic functions for the Dirac equation with a Lorentz scalar, inverse-linear potential by assuming that the scalar potential field is strong ($A gg 1$). We restrict ourselves to the case where only the positive part of the spectrum gives a contribution to the sum in partition function. We give the analytical results for high temperatures.
136 - Shuang-Qing Wu 2009
It is shown that the Dirac equation is separable by variables in a five-dimensional rotating Kerr-(anti-)de Sitter black hole with two independent angular momenta. A first order symmetry operator that commutes with the Dirac operator is constructed in terms of a rank-three Killing-Yano tensor whose square is a second order symmetric Stackel-Killing tensor admitted by the five-dimensional Kerr-(anti-)de Sitter spacetime. We highlight the construction procedure of such a symmetry operator. In addition, the first law of black hole thermodynamics has been extended to the case that the cosmological constant can be viewed as a thermodynamical variable.
Two series of integrable theories are constructed which have soliton solutions and can be thought of as generalizations of the sine-Gordon theory. They exhibit internal symmetries and can be described as gauged WZW theories with a potential term. The spectrum of massive states is determined.
We point out a misleading treatment in the literature regarding to bound-state solutions for the $s$-wave Klein-Gordon equation with exponential scalar and vector potentials. Following the appropriate procedure for an arbitrary mixing of scalar and vector couplings, we generalize earlier works and present the correct solution to bound states and additionally we address the issue of scattering states. Moreover, we present a new effect related to the polarization of the charge density in the presence of weak short-range exponential scalar and vector potentials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا