It is well-known that the nonlinear coupling between a mechanical oscillator and a superconducting oscillator or optical cavity can be used to generate a Kerr-nonlinearity for the cavity mode. We show that the strength of this Kerr-nonlinearity, as well as the effect of the photon-pressure force can be enormously increased by modulating the strength of the nonlinear coupling. We present an electromechanical circuit in which this enhancement can be readily realized.
Radiation pressure within engineered structures has recently been used to couple the motion of nanomechanical objects with high sensitivity to optical and microwave electromagnetic fields. Here, we demonstrate a form of electromechanical crystal for coupling microwave photons and hypersonic phonons by embedding the vacuum-gap capacitor of a superconducting resonator within a phononic crystal acoustic cavity. Utilizing a two-photon resonance condition for efficient microwave pumping and a phononic bandgap shield to eliminate acoustic radiation, we demonstrate large cooperative coupling ($C approx 30$) between a pair of electrical resonances at $10$GHz and an acoustic resonance at $0.425$GHz. Electrical read-out of the phonon occupancy shows that the hypersonic acoustic mode has an intrinsic energy decay time of $2.3$ms and thermalizes close to its quantum ground-state of motion (occupancy $1.5$) at a fridge temperature of $10$mK. Such an electromechanical transducer is envisioned as part of a hybrid quantum circuit architecture, capable of interfacing to both superconducting qubits and optical photons.
Bulk materials possessing a relative electric permittivity $varepsilon$ close to zero exhibit giant Kerr nonlinearities. However, harnessing this response in guided-wave geometries is not straightforward, due to the extreme and counter-intuitive properties of epsilon-near-zero materials. Here we investigate, through rigorous calculations of the Kerr nonlinear coefficient, how the remarkable nonlinear properties of such materials can be exploited in several different types of structures, including bulk films, plasmonic nanowires, and metal nanoapertures. We find the largest Kerr nonlinear response when both the modal area and the group velocity are simultaneously minimized, corresponding to omnidirectional field enhancement. The physical insights developed will be key for understanding and engineering nonlinear nanophotonic systems with extreme nonlinearities and point to new design paradigms.
Cavity electro-(opto-)mechanics allows us to access not only single isolated but also multiple mechanical modes in a massive object. Here we develop a multi-mode electromechanical system in which a several membrane vibrational modes are coupled to a three-dimensional loop-gap superconducting microwave cavity. The tight confinement of the electric field across a mechanically-compliant narrow-gap capacitor brings the system into the quantum strong coupling regime under a red-sideband pump field. We demonstrate strong coupling between two mechanical modes, which is induced by two-tone parametric drives and mediated by a virtual photon in the cavity. The tunable inter-mechanical-mode coupling can be used to generate entanglement between the mechanical modes.
Demonstrating and exploiting the quantum nature of larger, more macroscopic mechanical objects would help us to directly investigate the limitations of quantum-based measurements and quantum information protocols, as well as test long standing questions about macroscopic quantum coherence. The field of cavity opto- and electro-mechanics, in which a mechanical oscillator is parametrically coupled to an electromagnetic resonance, provides a practical architecture for the manipulation and detection of motion at the quantum level. Reaching this quantum level requires strong coupling, interaction timescales between the two systems that are faster than the time it takes for energy to be dissipated. By incorporating a free-standing, flexible aluminum membrane into a lumped-element superconducting resonant cavity, we have increased the single photon coupling strength between radio-frequency mechanical motion and resonant microwave photons by more than two orders of magnitude beyond the current state-of-the-art. A parametric drive tone at the difference frequency between the two resonant systems dramatically increases the overall coupling strength. This has allowed us to completely enter the strong coupling regime. This is evidenced by a maximum normal mode splitting of nearly six bare cavity line-widths. Spectroscopic measurements of these dressed states are in excellent quantitative agreement with recent theoretical predictions. The basic architecture presented here provides a feasible path to ground-state cooling and subsequent coherent control and measurement of the quantum states of mechanical motion.
We investigate nonlinear effects in an electromechanical system consisting of a superconducting charge qubit coupled to transmission line resonator and a nanomechanical oscillator, which in turn is coupled to another transmission line resonator. The nonlinearities induced by the superconducting qubit and the optomechanical coupling play an important role in creating optomechanical entanglement as well as the squeezing of the transmitted microwave field. We show that strong squeezing of the microwave field and robust optomechanical entanglement can be achieved in the presence of moderate thermal decoherence of the mechanical mode. We also discuss the effect of the coupling of the superconducting qubit to the nanomechanical oscillator on the bistability behaviour of the mean photon number.