No Arabic abstract
We study interacting dipolar atomic bosons in a triple-well potential within a ring geometry. This system is shown to be equivalent to a three-site Bose-Hubbard model. We analyze the ground state of dipolar bosons by varying the effective on-site interaction. This analysis is performed both numerically and analytically by using suitable coherent-state representations of the ground state. The latter exhibits a variety of forms ranging from the su(3) coherent state in the delocalization regime to a macroscopic cat-like state with fully localized populations, passing for a coexistence regime where the ground state displays a mixed character. We characterize the quantum correlations of the ground state from the bi-partition perspective. We calculate both numerically and analytically (within the previous coherent-state representation) the single-site entanglement entropy which, among various interesting properties, exhibits a maximum value in correspondence to the transition from the cat-like to the coexistence regime. In the latter case, we show that the ground-state mixed form corresponds, semiclassically, to an energy exhibiting two almost-degenerate minima.
We investigate the ground state properties and tunneling dynamics of ultracold dipolar bosons in a one dimensional triple well trap from a few-body ab-initio perspective. Our focus is primarily on the distinctive features of dipolar bosons compared to the contact interacting bosons. Formation of intra-well localization is observed for very strong dipolar interaction. General population rearangement as well as fragmentation and localization effects have been found, depending strongly on the particle number. The energy spectrum for two particles exhibits avoided crossings that lead to several distinct resonances involving different bands, i.e. to an inter-band resonant tunneling dynamics. The corresponding mechanisms are investigated by studying among others the pair-probability and performing an eigenstate analysis.
We investigate the energy structures and the dynamics of a Bose-Einstein condensates (BEC) in a triple-well potential coupled a high finesse optical cavity within a mean field approach. Due to the intrinsic atom-cavity field nonlinearity, several interesting phenomena arise which are the focuses of this work. For the energy structure, the bistability appears in the energy levels due to this atoms-cavity field nonlinearity, and the same phenomena can be found in the intra-cavity photons number. With an increase of the pump-cavity detunings, the higher and lower energy levels show a loop structure due to this cavity-mediated effects. In the dynamical process, an extensive numerical simulation of localization of the BECs for atoms initially trapped in one-, two-, and three-wells are performed for the symmetric and asymmetric cases in detail. It is shown that the the transition from oscillation to the localization can be modified by the cavity-mediated potential, which will enlarge the regions of oscillation. With the increasing of the atomic interaction, the oscillation is blocked and the localization emerges. The condensates atoms can be trapped either in one-, two-, or in three wells eventually where they are initially uploaded for certain parameters. In particular, we find that the transition from the oscillation to the localization is accompanied with some irregular regime where tunneling dynamics is dominated by chaos for this cavity-mediated system.
We investigate the dynamical properties for non-Hermitian triple-well system with a loss in the middle well. When chemical potentials in two end wells are uniform and nonlinear interactions are neglected, there always exists a dark state, whose eigenenergy becomes zero, and the projections onto which do not change over time and the loss factor. The increasing of loss factor only makes the damping form from the oscillating decay to over-damping decay. However, when the nonlinear interaction is introduced, even interactions in the two end wells are also uniform, the projection of the dark state will be obviously diminished. Simultaneously the increasing of loss factor will also aggravate the loss. In this process the interaction in the middle well plays no role. When two chemical potentials or interactions in two end wells are not uniform all disappear with time. In addition, when we extend the triple-well system to a general (2n + 1)-well, the loss is reduced greatly by the factor 1=2n in the absence of the nonlinear interaction.
The recent advances in creating nearly degenerate quantum dipolar gases in optical lattices are opening the doors for the exploration of equilibrium physics of quantum systems with anisotropic and long-range dipolar interactions. In this paper we study the zero- and finite-temperature phase diagrams of a system of hard-core dipolar bosons at half-filling, trapped in a two-dimensional optical lattice. The dipoles are aligned parallel to one another and tilted out of the optical lattice plane by means of an external electric field. At zero-temperature, the system is a superfluid at all tilt angles $theta$ provided that the strength of dipolar interaction is below a critical value $V_c(theta)$. Upon increasing the interaction strength while keeping $theta$ fixed, the superfluid phase is destabilized in favor of a checkerboard or a stripe solid depending on the tilt angle. We explore the nature of the phase transition between the two solid phases and find evidence of a micro-emulsion phase, following the Spivak-Kivelson scenario, separating these two solid phases. Additionally, we study the stability of these quantum phases against thermal fluctuations and find that the stripe solid is the most robust, making it the best candidate for experimental observation.
Recent experiments with ultracold lanthanide atoms which are characterized by a large magnetic moment have revealed the crucial importance of beyond-mean-field corrections in understanding the dynamics of the gas. We study how the presence of an external optical lattice modifies the structure of the corrections. We find that deep in the superfluid regime the equation of state is well described by introducing an anisotropic effective mass. However, for a deep lattice we find terms with anomalous density dependence which do not arise in free space. For a one-dimensional lattice, the relative orientation of the dipole axis with respect to the lattice plays a crucial role and the beyond-mean-field corrections can be either enhanced or suppressed.