Do you want to publish a course? Click here

Ultracold dipolar few-boson ensembles in a triple well trap

91   0   0.0 ( 0 )
 Added by Lushuai Cao Dr.
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the ground state properties and tunneling dynamics of ultracold dipolar bosons in a one dimensional triple well trap from a few-body ab-initio perspective. Our focus is primarily on the distinctive features of dipolar bosons compared to the contact interacting bosons. Formation of intra-well localization is observed for very strong dipolar interaction. General population rearangement as well as fragmentation and localization effects have been found, depending strongly on the particle number. The energy spectrum for two particles exhibits avoided crossings that lead to several distinct resonances involving different bands, i.e. to an inter-band resonant tunneling dynamics. The corresponding mechanisms are investigated by studying among others the pair-probability and performing an eigenstate analysis.

rate research

Read More

We study interacting dipolar atomic bosons in a triple-well potential within a ring geometry. This system is shown to be equivalent to a three-site Bose-Hubbard model. We analyze the ground state of dipolar bosons by varying the effective on-site interaction. This analysis is performed both numerically and analytically by using suitable coherent-state representations of the ground state. The latter exhibits a variety of forms ranging from the su(3) coherent state in the delocalization regime to a macroscopic cat-like state with fully localized populations, passing for a coexistence regime where the ground state displays a mixed character. We characterize the quantum correlations of the ground state from the bi-partition perspective. We calculate both numerically and analytically (within the previous coherent-state representation) the single-site entanglement entropy which, among various interesting properties, exhibits a maximum value in correspondence to the transition from the cat-like to the coexistence regime. In the latter case, we show that the ground-state mixed form corresponds, semiclassically, to an energy exhibiting two almost-degenerate minima.
We investigate the tunneling properties of a two-species few-boson mixture in a one-dimensional triple well and harmonic trap. The mixture is prepared in an initial state with a strong spatial correlation for one species and a complete localization for the other species. We observe a correlation-induced tunneling process in the weak interspecies interaction regime. The onset of the interspecies interaction disturbes the spatial correlation of one species and induces tunneling among the correlated wells. The corresponding tunneling properties can be controlled by the spatial correlations with an underlying mechanism which is inherently different from the well known resonant tunneling process. We also observe the correlated tunneling of both species in the intermediate interspecies interaction regime and the tunneling via higher band states for strong interactions.
201 - Lei Tan , Bin Wang , Peter Barker 2012
We investigate the energy structures and the dynamics of a Bose-Einstein condensates (BEC) in a triple-well potential coupled a high finesse optical cavity within a mean field approach. Due to the intrinsic atom-cavity field nonlinearity, several interesting phenomena arise which are the focuses of this work. For the energy structure, the bistability appears in the energy levels due to this atoms-cavity field nonlinearity, and the same phenomena can be found in the intra-cavity photons number. With an increase of the pump-cavity detunings, the higher and lower energy levels show a loop structure due to this cavity-mediated effects. In the dynamical process, an extensive numerical simulation of localization of the BECs for atoms initially trapped in one-, two-, and three-wells are performed for the symmetric and asymmetric cases in detail. It is shown that the the transition from oscillation to the localization can be modified by the cavity-mediated potential, which will enlarge the regions of oscillation. With the increasing of the atomic interaction, the oscillation is blocked and the localization emerges. The condensates atoms can be trapped either in one-, two-, or in three wells eventually where they are initially uploaded for certain parameters. In particular, we find that the transition from the oscillation to the localization is accompanied with some irregular regime where tunneling dynamics is dominated by chaos for this cavity-mediated system.
This tutorial is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules that interact via dipolar forces, and that are cooled below the quantum degeneracy temperature, typically in the nK range. When such a degenerate quantum gas is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur. These systems realize then extended Hubbard-type models, and can be brought to a strongly correlated regime. The physical properties of such gases, dominated by the long-range, anisotropic dipole-dipole interactions, are discussed using the mean-field approximations, and exact Quantum Monte Carlo techniques (the Worm algorithm).
111 - A. Frisch , M. Mark , K. Aikawa 2015
In a combined experimental and theoretical effort, we demonstrate a novel type of dipolar system made of ultracold bosonic dipolar molecules with large magnetic dipole moments. Our dipolar molecules are formed in weakly bound Feshbach molecular states from a sample of strongly magnetic bosonic erbium atoms. We show that the ultracold magnetic molecules can carry very large dipole moments and we demonstrate how to create and characterize them, and how to change their orientation. Finally, we confirm that the relaxation rates of molecules in a quasi-two dimensional geometry can be reduced by using the anisotropy of the dipole-dipole interaction and that this reduction follows a universal dipolar behavior.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا