Do you want to publish a course? Click here

On-chip filter bank spectroscopy at 600-700 GHz using NbTiN superconducting resonators

142   0   0.0 ( 0 )
 Added by Akira Endo
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally demonstrate the principle of an on-chip submillimeter wave filter bank spectrometer, using superconducting microresonators as narrow band-separation filters. The filters are made of NbTiN/SiNx/NbTiN microstrip line resonators, which have a resonance frequency in the range of 614-685 GHz---two orders of magnitude higher in frequency than what is currently studied for use in circuit quantum electrodynamics and photodetectors. The frequency resolution of the filters decreases from 350 to 140 with increasing frequency, most likely limited by dissipation of the resonators.



rate research

Read More

SuperSpec is an ultra-compact spectrometer-on-a-chip for millimeter and submillimeter wavelength astronomy. Its very small size, wide spectral bandwidth, and highly multiplexed readout will enable construction of powerful multibeam spectrometers for high-redshift observations. The spectrometer consists of a horn-coupled microstrip feedline, a bank of narrow-band superconducting resonator filters that provide spectral selectivity, and Kinetic Inductance Detectors (KIDs) that detect the power admitted by each filter resonator. The design is realized using thin-film lithographic structures on a silicon wafer. The mm-wave microstrip feedline and spectral filters of the first prototype are designed to operate in the band from 195-310 GHz and are fabricated from niobium with at Tc of 9.2K. The KIDs are designed to operate at hundreds of MHz and are fabricated from titanium nitride with a Tc of 2K. Radiation incident on the horn travels along the mm-wave microstrip, passes through the frequency-selective filter, and is finally absorbed by the corresponding KID where it causes a measurable shift in the resonant frequency. In this proceedings, we present the design of the KIDs employed in SuperSpec and the results of initial laboratory testing of a prototype device. We will also briefly describe the ongoing development of a demonstration instrument that will consist of two 500-channel, R=700 spectrometers, one operating in the 1-mm atmospheric window and the other covering the 650 and 850 micron bands.
An integrated filterbank (IFB) in combination with microwave kinetic inductance detectors (MKIDs), both based on superconducting resonators, could be used to make broadband submillimeter imaging spectrographs that are compact and flexible. In order to investigate the possibility of adopting an IFB configuration for DESHIMA (Delft SRON High-redshift Mapper), we study the basic properties of a coplanar-waveguide-based IFB using electromagnetic simulation. We show that a coupling efficiency greater than 1/2 can be achieved if transmission losses are negligible. We arrive at a practical design for a 9 pixel x 920 color 3 dimensional imaging device that fits on a 4 inch wafer, which instantaneously covers multiple submillimeter telluric windows with a dispersion of f/df = 1000.
We present a method to measure the absolute surface resistance of conductive samples at a set of GHz frequencies with superconducting lead stripline resonators at temperatures 1- 6K. The stripline structure can easily be applied for bulk samples and allows direct calculation of the surface resistance without the requirement of additional calibration measurements or sample reference points. We further describe a correction method to reduce experimental background on high-Q resonance modes by exploiting TEM-properties of the external cabling. We then show applications of this method to the reference materials gold, tantalum, and tin, which include the anomalous skin effect and conventional superconductivity. Furthermore, we extract the complex optical conductivity for an all-lead stripline resonator to find a coherence peak and the superconducting gap of lead.
We present an interdigitated capacitor trimming technique for fine-tuning the resonance frequency of superconducting microresonators and increasing the multiplexing factor. We first measure the optical response of the array with a beam mapping system to link all resonances to their physical resonators. Then a new set of resonance frequencies with uniform spacing and higher multiplexing factor is designed. We use simulations to deduce the lengths that we should trim from the capacitor fingers in order to shift the resonances to the desired frequencies. The sample is then modified using contact lithography and re-measured using the same setup. We demonstrate this technique on a 112-pixel aluminum lumped-element kinetic-inductance detector array. Before trimming, the resonance frequency deviation of this array is investigated. The variation of the inductor width plays the main role for the deviation. After trimming, the mean fractional frequency error for identified resonators is -6.4e-4, with a standard deviation of 1.8e-4. The final optical yield is increased from 70.5% to 96.7% with no observable crosstalk beyond -15 dB during mapping. This technique could be applied to other photon-sensitive superconducting microresonator arrays for increasing the yield and multiplexing factor.
Superconducting resonators used in millimeter-submillimeter astronomy would greatly benefit from deposited dielectrics with a small dielectric loss. We deposited hydrogenated amorphous silicon films using plasma-enhanced chemical vapor deposition, at substrate temperatures of 100deg C, 250deg C and 350deg C. The measured void volume fraction, hydrogen content, microstructure parameter, and bond-angle disorder are negatively correlated with the substrate temperature. All three films have a loss tangent below $10^{-5}$ for a resonator energy of $10^5$ photons, at 120 mK and 4-7 GHz. This makes these films promising for microwave kinetic inductance detectors and on-chip millimeter-submilimeter filters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا