Do you want to publish a course? Click here

Integrated Filterbank for DESHIMA: A Submillimeter Imaging Spectrograph Based on Superconducting Resonators

358   0   0.0 ( 0 )
 Added by Akira Endo
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

An integrated filterbank (IFB) in combination with microwave kinetic inductance detectors (MKIDs), both based on superconducting resonators, could be used to make broadband submillimeter imaging spectrographs that are compact and flexible. In order to investigate the possibility of adopting an IFB configuration for DESHIMA (Delft SRON High-redshift Mapper), we study the basic properties of a coplanar-waveguide-based IFB using electromagnetic simulation. We show that a coupling efficiency greater than 1/2 can be achieved if transmission losses are negligible. We arrive at a practical design for a 9 pixel x 920 color 3 dimensional imaging device that fits on a 4 inch wafer, which instantaneously covers multiple submillimeter telluric windows with a dispersion of f/df = 1000.



rate research

Read More

Terahertz spectrometers with a wide instantaneous frequency coverage for passive remote sensing are enormously attractive for many terahertz applications, such as astronomy, atmospheric science and security. Here we demonstrate a wide-band terahertz spectrometer based on a single superconducting chip. The chip consists of an antenna coupled to a transmission line filterbank, with a microwave kinetic inductance detector behind each filter. Using frequency division multiplexing, all detectors are read-out simultaneously creating a wide-band spectrometer with an instantaneous bandwidth of 45 GHz centered around 350 GHz. The spectrometer has a spectral resolution of $F/Delta F=380$ and reaches photon-noise limited sensitivity. We discuss the chip design and fabrication, as well as the system integration and testing. We confirm full system operation by the detection of an emission line spectrum of methanol gas. The proposed concept allows for spectroscopic radiation detection over large bandwidths and resolutions up to $F/Delta Fsim1000$, all using a chip area of a few $mathrm{cm^2}$. This will allow the construction of medium resolution imaging spectrometers with unprecedented speed and sensitivity.
We are developing an ultra-wideband spectroscopic instrument, DESHIMA (DEep Spectroscopic HIgh-redshift MApper), based on the technologies of an on-chip filter-bank and Microwave Kinetic Inductance Detector (MKID) to investigate dusty star-burst galaxies in the distant universe at millimeter and submillimeter wavelength. An on-site experiment of DESHIMA was performed using the ASTE 10-m telescope. We established a responsivity model that converts frequency responses of the MKIDs to line-of-sight brightness temperature. We estimated two parameters of the responsivity model using a set of skydip data taken under various precipitable water vapor (PWV, 0.4-3.0 mm) conditions for each MKID. The line-of-sight brightness temperature of sky is estimated using an atmospheric transmission model and the PWVs. As a result, we obtain an average temperature calibration uncertainty of $1sigma=4$%, which is smaller than other photometric biases. In addition, the average forward efficiency of 0.88 in our responsivity model is consistent with the value expected from the geometrical support structure of the telescope. We also estimate line-of-sight PWVs of each skydip observation using the frequency response of MKIDs, and confirm the consistency with PWVs reported by the Atacama Large Millimeter/submillimeter Array.
96 - K. Kohno , R. Kawabe , Y. Tamura 2021
We present a conceptual study of a large format imaging spectrograph for the Large Submillimeter Telescope (LST) and the Atacama Large Aperture Submillimeter Telescope (AtLAST). Recent observations of high-redshift galaxies indicate the onset of earliest star formation just a few 100 million years after the Big Bang (i.e., z = 12--15), and LST/AtLAST will provide a unique pathway to uncover spectroscopically-identified first forming galaxies in the pre-reionization era, once it will be equipped with a large format imaging spectrograph. We propose a 3-band (200, 255, and 350 GHz), medium resolution (R = 2,000) imaging spectrograph with 1.5 M detectors in total based on the KATANA concept (Karatsu et al. 2019), which exploits technologies of the integrated superconducting spectrometer (ISS) and a large-format imaging array. A 1-deg2 drilling survey (3,500 hr) will capture a large number of [O III] 88 um (and [C II] 158 um) emitters at z = 8--9, and constrain [O III] luminosity functions at z > 12.
Superconducting resonators used in millimeter-submillimeter astronomy would greatly benefit from deposited dielectrics with a small dielectric loss. We deposited hydrogenated amorphous silicon films using plasma-enhanced chemical vapor deposition, at substrate temperatures of 100deg C, 250deg C and 350deg C. The measured void volume fraction, hydrogen content, microstructure parameter, and bond-angle disorder are negatively correlated with the substrate temperature. All three films have a loss tangent below $10^{-5}$ for a resonator energy of $10^5$ photons, at 120 mK and 4-7 GHz. This makes these films promising for microwave kinetic inductance detectors and on-chip millimeter-submilimeter filters.
We experimentally demonstrate the principle of an on-chip submillimeter wave filter bank spectrometer, using superconducting microresonators as narrow band-separation filters. The filters are made of NbTiN/SiNx/NbTiN microstrip line resonators, which have a resonance frequency in the range of 614-685 GHz---two orders of magnitude higher in frequency than what is currently studied for use in circuit quantum electrodynamics and photodetectors. The frequency resolution of the filters decreases from 350 to 140 with increasing frequency, most likely limited by dissipation of the resonators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا