Do you want to publish a course? Click here

Vapor-Solid Growth of High Optical Quality MoS2 Monolayers With Near-Unity Valley Polarization

262   0   0.0 ( 0 )
 Added by Sanfeng Wu
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Monolayers of transition metal dichalcogenides (TMDCs) are atomically thin direct-gap semiconductors with potential applications in nanoelectronics, optoelectronics, and electrochemical sensing. Recent theoretical and experimental efforts suggest that they are ideal systems for exploiting the valley degrees of freedom of Bloch electrons. For example, Dirac valley polarization has been demonstrated in mechanically exfoliated monolayer MoS2 samples by polarization-resolved photoluminescence, although polarization has rarely been seen at room temperature. Here we report a new method for synthesizing high optical quality monolayer MoS2 single crystals up to 25 microns in size on a variety of standard insulating substrates (SiO2, sapphire and glass) using a catalyst-free vapor-solid growth mechanism. The technique is simple and reliable, and the optical quality of the crystals is extremely high, as demonstrated by the fact that the valley polarization approaches unity at 30 K and persists at 35% even at room temperature, suggesting a virtual absence of defects. This will allow greatly improved optoelectronic TMDC monolayer devices to be fabricated and studied routinely.



rate research

Read More

Chemical vapor deposition (CVD) allows growing transition metal dichalcogenides (TMDs) over large surface areas on inexpensive substrates. In this work, we correlate the structural quality of CVD grown MoS$_2$ monolayers (MLs) on SiO$_2$/Si wafers studied by high-resolution transmission electron microscopy (HRTEM) with high optical quality revealed in optical emission and absorption from cryogenic to ambient temperatures. We determine a defect concentration of the order of 10$^{13}$ cm$^{-2}$ for our samples with HRTEM. To have access to the intrinsic optical quality of the MLs, we remove the MLs from the SiO$_2$ growth substrate and encapsulate them in hBN flakes with low defect density, to reduce the detrimental impact of dielectric disorder. We show optical transition linewidth of 5 meV at low temperature (T=4 K) for the free excitons in emission and absorption. This is comparable to the best ML samples obtained by mechanical exfoliation of bulk material. The CVD grown MoS$_2$ ML photoluminescence is dominated by free excitons and not defects even at low temperature. High optical quality of the samples is further confirmed by the observation of excited exciton states of the Rydberg series. We optically generate valley coherence and valley polarization in our CVD grown MoS$_2$ layers, showing the possibility for studying spin and valley physics in CVD samples of large surface area.
We report experimental evidences on selective occupation of the degenerate valleys in MoS2 monolayers by circularly polarized optical pumping. Over 30% valley polarization has been observed at K and K valley via the polarization resolved luminescence spectra on pristine MoS2 monolayers. It demonstrates one viable way to generate and detect valley polarization towards the conceptual valleytronics applications with information carried by the valley index.
We show that inversion symmetry breaking together with spin-orbit coupling leads to coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, making possible controls of spin and valley in these 2D materials. The spin-valley coupling at the valence band edges suppresses spin and valley relaxation, as flip of each index alone is forbidden by the valley contrasting spin splitting. Valley Hall and spin Hall effects coexist in both electron-doped and hole-doped systems. Optical interband transitions have frequency-dependent polarization selection rules which allow selective photoexcitation of carriers with various combination of valley and spin indices. Photo-induced spin Hall and valley Hall effects can generate long lived spin and valley accumulations on sample boundaries. The physics discussed here provides a route towards the integration of valleytronics and spintronics in multi-valley materials with strong spin-orbit coupling and inversion symmetry breaking.
150 - G. Sallen , L. Bouet , X. Marie 2012
We report polarization resolved photoluminescence from monolayer MoS2, a two-dimensional, non-centrosymmetric crystal with direct energy gaps at two different valleys in momentum space. The inherent chiral optical selectivity allows exciting one of these valleys and close to 90% polarized emission at 4K is observed with 40% polarization remaining at 300K. The high polarization degree of the emission remains unchanged in transverse magnetic fields up to 9T indicating robust, selective valley excitation.
Chemical vapor deposition (CVD) of two-dimensional (2D) materials such as monolayer MoS2 typically involves the conversion of vapor-phase precursors to a solid product in a process that may be described as a vapor-solid-solid (VSS) mode. Here, we report the first demonstration of vapor-liquid-solid (VLS) growth of monolayer MoS2 yielding highly crystalline ribbon-shaped structures with a width of a few tens of nanometers to a few micrometers. The VLS growth mode is triggered by the reaction between molybdenum oxide and sodium chloride, which results in the formation of molten Na-Mo-O droplets. These droplets mediate the growth of MoS2 ribbons in the crawling mode when saturated with sulfur on a crystalline substrate. Our growth yields straight and kinked ribbons with a locally well-defined orientation, reflecting the regular horizontal motion of the liquid droplets during growth. Using atomic-resolution scanning transmission electron microscopy (STEM) and second harmonic generation (SHG) microscopy, we show that the ribbons are homoepitaxially on monolayer MoS2 surface with predominantly 2H- or 3R-type stacking. These findings pave the way to novel devices with structures of mixed dimensionalities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا