Do you want to publish a course? Click here

Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides

165   0   0.0 ( 0 )
 Added by Wang Yao
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that inversion symmetry breaking together with spin-orbit coupling leads to coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, making possible controls of spin and valley in these 2D materials. The spin-valley coupling at the valence band edges suppresses spin and valley relaxation, as flip of each index alone is forbidden by the valley contrasting spin splitting. Valley Hall and spin Hall effects coexist in both electron-doped and hole-doped systems. Optical interband transitions have frequency-dependent polarization selection rules which allow selective photoexcitation of carriers with various combination of valley and spin indices. Photo-induced spin Hall and valley Hall effects can generate long lived spin and valley accumulations on sample boundaries. The physics discussed here provides a route towards the integration of valleytronics and spintronics in multi-valley materials with strong spin-orbit coupling and inversion symmetry breaking.



rate research

Read More

Monolayers of transition metal dichalcogenides are ideal materials to control both spin and valley degrees of freedom either electrically or optically. Nevertheless, optical excitation mostly generates excitons species with inherently short lifetime and spin/valley relaxation time. Here we demonstrate a very efficient spin/valley optical pumping of resident electrons in n-doped WSe2 and WS2 monolayers. We observe that, using a continuous wave laser and appropriate doping and excitation densities, negative trion doublet lines exhibit circular polarization of opposite sign and the photoluminescence intensity of the triplet trion is more than four times larger with circular excitation than with linear excitation. We interpret our results as a consequence of a large dynamic polarization of resident electrons using circular light.
Valleytronic materials, characterized by local extrema (valley) in their bands, and topological insulators have separately attracted great interest recently. However, the interplay between valleytronic and topological properties in one single system, likely to enable important unexplored phenomena and applications, has been largely overlooked so far. Here, by combining a tight-binding model with first-principles calculations, we find the large-band-gap quantum spin Hall effects (QSHEs) and valley Hall effects (VHEs) appear simultaneously in the Bi monolayers decorated with halogen elements, denoted as Bi2XY (X, Y = H, F, Cl, Br, or I). A staggered exchange field is introduced into the Bi2XY monolayers by transition metal atom (Cr, Mo, or W) doping or LaFeO3 magnetic substrates, which together with the strong SOC of Bi atoms generates a time-reversal-symmetry-broken QSHE and a huge valley splitting (up to 513 meV) in the system. With gate control, QSHE and anomalous charge, spin, valley Hall effects can be observed in the single system. These predicted multiple and exotic Hall effects, associated with various degrees of freedom of electrons, could enable applications of the functionalized Bi monolayers in electronics, spintronics, and valleytronics.
Monolayers of transition metal dichalcogenides (TMDCs) are atomically thin direct-gap semiconductors with potential applications in nanoelectronics, optoelectronics, and electrochemical sensing. Recent theoretical and experimental efforts suggest that they are ideal systems for exploiting the valley degrees of freedom of Bloch electrons. For example, Dirac valley polarization has been demonstrated in mechanically exfoliated monolayer MoS2 samples by polarization-resolved photoluminescence, although polarization has rarely been seen at room temperature. Here we report a new method for synthesizing high optical quality monolayer MoS2 single crystals up to 25 microns in size on a variety of standard insulating substrates (SiO2, sapphire and glass) using a catalyst-free vapor-solid growth mechanism. The technique is simple and reliable, and the optical quality of the crystals is extremely high, as demonstrated by the fact that the valley polarization approaches unity at 30 K and persists at 35% even at room temperature, suggesting a virtual absence of defects. This will allow greatly improved optoelectronic TMDC monolayer devices to be fabricated and studied routinely.
Motivated by the triumph and limitation of graphene for electronic applications, atomically thin layers of group VI transition metal dichalcogenides are attracting extensive interest as a class of graphene-like semiconductors with a desired band-gap in the visible frequency range. The monolayers feature a valence band spin splitting with opposite sign in the two valleys located at corners of 1st Brillouin zone. This spin-valley coupling, particularly pronounced in tungsten dichalcogenides, can benefit potential spintronics and valleytronics with the important consequences of spin-valley interplay and the suppression of spin and valley relaxations. Here we report the first optical studies of WS2 and WSe2 monolayers and multilayers. The efficiency of second harmonic generation shows a dramatic even-odd oscillation with the number of layers, consistent with the presence (absence) of inversion symmetry in even-layer (odd-layer). Photoluminescence (PL) measurements show the crossover from an indirect band gap semiconductor at mutilayers to a direct-gap one at monolayers. The PL spectra and first-principle calculations consistently reveal a spin-valley coupling of 0.4 eV which suppresses interlayer hopping and manifests as a thickness independent splitting pattern at valence band edge near K points. This giant spin-valley coupling, together with the valley dependent physical properties, may lead to rich possibilities for manipulating spin and valley degrees of freedom in these atomically thin 2D materials.
The bid for scalable physical qubits has attracted many possible candidate platforms. In particular, spin-based qubits in solid-state form factors are attractive as they could potentially benefit from processes similar to those used for conventional semiconductor processing. However, material control is a significant challenge for solid-state spin qubits as residual spins from substrate, dielectric, electrodes or contaminants from processing contribute to spin decoherence. In the recent decade, valleytronics has seen a revival due to the discovery of valley-coupled spins in monolayer transition metal dichalcogenides. Such valley-coupled spins are protected by inversion asymmetry and time-reversal symmetry and are promising candidates for robust qubits. In this report, the progress toward building such qubits is presented. Following an introduction to the key attractions in fabricating such qubits, an up-to-date brief is provided for the status of each key step, highlighting advancements made and/or outstanding work to be done. This report concludes with a perspective on future development highlighting major remaining milestones toward scalable spin-valley qubits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا