Do you want to publish a course? Click here

Ferromagnetic planar Josephson junction with transparent interfaces: a {phi} junction proposal

234   0   0.0 ( 0 )
 Added by Dennis M. Heim
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We calculate the current phase relation of a planar Josephson junction with a ferromagnetic weak link located on top of a thin normal metal film. Following experimental observations we assume transparent superconductor-ferromagnet interfaces. This provides the best interlayer coupling and a low suppression of the superconducting correlations penetrating from the superconducting electrodes into the ferromagnetic layer. We show that this Josephson junction is a promising candidate for an experimental {phi} junction realization.



rate research

Read More

265 - M. Houzet 2008
The Josephson current in a diffusive superconductor/ferromagnet/superconductor junction with precessing magnetization is calculated within the quasiclassical theory of superconductivity. When the junction is phase-biased, a stationary current (without a.c. component) can flow through it despite the non-equilibrium condition. A large critical current is predicted due to a dynamically induced long range triplet proximity effect. Such effect could be observed in a conventional hybrid device close to the ferromagnetic resonance.
We demonstrate experimentally the existence of Josephson junctions having a doubly degenerate ground state with an average Josephson phase psi=pm{phi}. The value of {phi} can be chosen by design in the interval 0<{phi}<pi. The junctions used in our experiments are fabricated as 0-{pi} Josephson junctions of moderate normalized length with asymmetric 0 and {pi} regions. We show that (a) these {phi} Josephson junctions have two critical currents, corresponding to the escape of the phase {psi} from -{phi} and +{phi} states; (b) the phase {psi} can be set to a particular state by tuning an external magnetic field or (c) by using a proper bias current sweep sequence. The experimental observations are in agreement with previous theoretical predictions.
114 - Jie Liu , Yijia Wu , Qing-Feng Sun 2019
A planar Josephson junction with a normal metal attached on its top surface will form a hollow nanowire structure due to its three dimensional nature. In such hollow nanowire structure, the magnetic flux induced by a small magnetic field (about 0.01T) will tune the system into topologically non-trivial phase and therefore two Majorana zero-modes will form at the ends of the nanowire. Through tuning the chemical potential of the normal metal, the topologically non-trivial phase can be obtained for almost all energy within the band. Furthermore, the system can be conveniently tuned between the topologically trivial and non-trivial phases via the phase difference between the superconductors. Such device, manipulable through flux, can be conveniently fabricated into desired 2D networks. Finally, we also propose a cross-shaped junction realizing the braiding of Majorana zero-modes through manipulating the phase differences.
140 - M. Zgirski , M. Foltyn , A. Savin 2017
We demonstrate a novel approach to thermometry at the nanoscale exploiting a superconducting weak link. Such a weak link probed with nanosecond current pulses serves as a temperature sensing element and, due to the fast inherent dynamics, is capable of delivering unprecedented temporal resolution. We employ the thermometer to measure dynamic temperature of electrons in a long superconducting wire relaxing to the bath temperature after application of the heating pulse. Our measurement delivers nanosecond resolution thus providing the proof-of-concept of the fastest-todate all-solid-state thermometry. Our method improves the state-of-the-art temporal resolution of mesoscopic thermometry by at least two orders of magnitude, extending temporal resolution of existing experiments and introducing new possibilities for ultra-sensitive calorimeters and radiation detectors.
Transport is called nonreciprocal when not only the sign, but also the absolute value of the current, depends on the polarity of the applied voltage. It requires simultaneously broken inversion and time-reversal symmetries, e.g., by the interplay of spin-orbit coupling and magnetic field. So far, observation of nonreciprocity was always tied to resistivity, and dissipationless nonreciprocal circuit elements were elusive. Here, we engineer fully superconducting nonreciprocal devices based on highly-transparent Josephson junctions fabricated on InAs quantum wells. We demonstrate supercurrent rectification far below the transition temperature. By measuring Josephson inductance, we can link nonreciprocal supercurrent to the asymmetry of the current-phase relation, and directly derive the supercurrent magnetochiral anisotropy coefficient for the first time. A semi-quantitative model well explains the main features of our experimental data. Nonreciprocal Josephson junctions have the potential to become for superconducting circuits what $pn$-junctions are for traditional electronics, opening the way to novel nondissipative circuit elements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا