Do you want to publish a course? Click here

Exact Methods for Multistage Estimation of a Binomial Proportion

155   0   0.0 ( 0 )
 Added by Xinjia Chen
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

We first review existing sequential methods for estimating a binomial proportion. Afterward, we propose a new family of group sequential sampling schemes for estimating a binomial proportion with prescribed margin of error and confidence level. In particular, we establish the uniform controllability of coverage probability and the asymptotic optimality for such a family of sampling schemes. Our theoretical results establish the possibility that the parameters of this family of sampling schemes can be determined so that the prescribed level of confidence is guaranteed with little waste of samples. Analytic bounds for the cumulative distribution functions and expectations of sample numbers are derived. Moreover, we discuss the inherent connection of various sampling schemes. Numerical issues are addressed for improving the accuracy and efficiency of computation. Computational experiments are conducted for comparing sampling schemes. Illustrative examples are given for applications in clinical trials.



rate research

Read More

105 - Xinjia Chen 2009
In this paper, we have established a unified framework of multistage parameter estimation. We demonstrate that a wide variety of statistical problems such as fixed-sample-size interval estimation, point estimation with error control, bounded-width confidence intervals, interval estimation following hypothesis testing, construction of confidence sequences, can be cast into the general framework of constructing sequential random intervals with prescribed coverage probabilities. We have developed exact methods for the construction of such sequential random intervals in the context of multistage sampling. In particular, we have established inclusion principle and coverage tuning techniques to control and adjust the coverage probabilities of sequential random intervals. We have obtained concrete sampling schemes which are unprecedentedly efficient in terms of sampling effort as compared to existing procedures.
150 - Xinjia Chen 2009
In this paper, we study the classical problem of estimating the proportion of a finite population. First, we consider a fixed sample size method and derive an explicit sample size formula which ensures a mixed criterion of absolute and relative errors. Second, we consider an inverse sampling scheme such that the sampling is continue until the number of units having a certain attribute reaches a threshold value or the whole population is examined. We have established a simple method to determine the threshold so that a prescribed relative precision is guaranteed. Finally, we develop a multistage sampling scheme for constructing fixed-width confidence interval for the proportion of a finite population. Powerful computational techniques are introduced to make it possible that the fixed-width confidence interval ensures prescribed level of coverage probability.
135 - Xinjia Chen 2009
In this paper, we have developed a new class of sampling schemes for estimating parameters of binomial and Poisson distributions. Without any information of the unknown parameters, our sampling schemes rigorously guarantee prescribed levels of precision and confidence.
110 - Xinjia Chen 2009
In this paper, we develop a multistage approach for estimating the mean of a bounded variable. We first focus on the multistage estimation of a binomial parameter and then generalize the estimation methods to the case of general bounded random variables. A fundamental connection between a binomial parameter and the mean of a bounded variable is established. Our multistage estimation methods rigorously guarantee prescribed levels of precision and confidence.
123 - Jiajin Wei , Ping He , Tiejun Tong 2020
As a classic parameter from the binomial distribution, the binomial proportion has been well studied in the literature owing to its wide range of applications. In contrast, the reciprocal of the binomial proportion, also known as the inverse proportion, is often overlooked, even though it also plays an important role in various fields including clinical studies and random sampling. The maximum likelihood estimator of the inverse proportion suffers from the zero-event problem, and to overcome it, alternative methods have been developed in the literature. Nevertheless, there is little work addressing the optimality of the existing estimators, as well as their practical performance comparison. Inspired by this, we propose to further advance the literature by developing an optimal estimator for the inverse proportion in a family of shrinkage estimators. We further derive the explicit and approximate formulas for the optimal shrinkage parameter under different settings. Simulation studies show that the performance of our new estimator performs better than, or as well as, the existing competitors in most practical settings. Finally, to illustrate the usefulness of our new method, we also revisit a recent meta-analysis on COVID-19 data for assessing the relative risks of physical distancing on the infection of coronavirus, in which six out of seven studies encounter the zero-event problem.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا