This note works out an advection-diffusion approximation to the density of a population of E. coli bacteria undergoing chemotaxis in a one-dimensional space. Simulations show the high quality of predictions under a shallow-gradient regime.
This note studies feedforward circuits as models for perfect adaptation to step signals in biological systems. A global convergence theorem is proved in a general framework, which includes examples from the literature as particular cases. A notable aspect of these circuits is that they do not adapt to pulse signals, because they display a memory phenomenon. Estimates are given of the magnitude of this effect.
Careys Equality pertaining to stationary models is well known. In this paper, we have stated and proved a fundamental theorem related to the formation of this Equality. This theorem will provide an in-depth understanding of the role of each captive subject, and their corresponding follow-up duration in a stationary population. We have demonstrated a numerical example of a captive cohort and the survival pattern of medfly populations. These results can be adopted to understand age-structure and aging process in stationary and non-stationary population population models. Key words: Captive cohort, life expectancy, symmetric patterns.
This paper addresses the existence and regularity of weak solutions for a fully parabolic model of chemotaxis, with prevention of overcrowding, that degenerates in a two-sided fashion, including an extra nonlinearity represented by a $p$-Laplacian diffusion term. To prove the existence of weak solutions, a Schauder fixed-point argument is applied to a regularized problem and the compactness method is used to pass to the limit. The local Holder regularity of weak solutions is established using the method of intrinsic scaling. The results are a contribution to showing, qualitatively, to what extent the properties of the classical Keller-Segel chemotaxis models are preserved in a more general setting. Some numerical examples illustrate the model.
Bacteria such as Escherichia coli move about in a series of runs and tumbles: while a run state (straight motion) entails all the flagellar motors spinning in counterclockwise mode, a tumble is caused by a shift in the state of one or more motors to clockwise spinning mode. In the presence of an attractant gradient in the environment, runs in the favourable direction are extended, and this results in a net drift of the organism in the direction of the gradient. The underlying signal transduction mechanism produces directed motion through a bi-lobed response function which relates the clockwise bias of the flagellar motor to temporal changes in the attractant concentration. The two lobes (positive and negative) of the response function are separated by a time interval of $sim 1$s, such that the bacterium effectively compares the concentration at two different positions in space and responds accordingly. We present here a novel path-integral method which allows us to address this problem in the most general way possible, including multi-step CW-CCW transitions, directional persistence and power-law waiting time distributions. The method allows us to calculate quantities such as the effective diffusion coefficient and drift velocity, in a power series expansion in the attractant gradient. Explicit results in the lowest order in the expansion are presented for specific models, which, wherever applicable, agree with the known results. New results for gamma-distributed run interval distributions are also presented.
Mathematical modelling and numerical simulations of interaction populations are crucial topics in systems biology. The interactions of ecological models may occur among individuals of the same species or individuals of different species. Describing the dynamics of such models occasionally requires some techniques of model analysis. Choosing appropriate techniques of model analysis is often a difficult task. We define a prey (mouse) and predator (cat) model. The system is modelled by a pair of non-linear ordinary differential equations using mass action law, under constant rates. A proper scaling is suggested to minimize the number of parameters. More interestingly, we propose a homotopy technique with n expanding parame- ters for finding some analytical approximate solutions. Furthermore, using the local sensitivity method is another important step forward in this study because it helps to identify critical model parameters. Numerical simulations are provided using Matlab for different parameters and initial conditions.
Zahra Aminzare
,Eduardo D. Sontag
.
(2013)
.
"Remarks on a population-level model of chemotaxis: advection-diffusion approximation and simulations"
.
Eduardo D. Sontag
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا