Do you want to publish a course? Click here

Paradoxes in Social Networks with Multiple Products

178   0   0.0 ( 0 )
 Added by Krzysztof R. Apt
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

Recently, we introduced in arXiv:1105.2434 a model for product adoption in social networks with multiple products, where the agents, influenced by their neighbours, can adopt one out of several alternatives. We identify and analyze here four types of paradoxes that can arise in these networks. To this end, we use social network games that we recently introduced in arxiv:1202.2209. These paradoxes shed light on possible inefficiencies arising when one modifies the sets of products available to the agents forming a social network. One of the paradoxes corresponds to the well-known Braess paradox in congestion games and shows that by adding more choices to a node, the network may end up in a situation that is worse for everybody. We exhibit a dual version of this, where removing available choices from someone can eventually make everybody better off. The other paradoxes that we identify show that by adding or removing a product from the choice set of some node may lead to permanent instability. Finally, we also identify conditions under which some of these paradoxes cannot arise.



rate research

Read More

Social networks have become ubiquitous in our daily life, as such it has attracted great research interests recently. A key challenge is that it is of extremely large-scale with tremendous information flow, creating the phenomenon of Big Data. Under such a circumstance, understanding information diffusion over social networks has become an important research issue. Most of the existing works on information diffusion analysis are based on either network structure modeling or empirical approach with dataset mining. However, the information diffusion is also heavily influenced by network users decisions, actions and their socio-economic connections, which is generally ignored in existing works. In this paper, we propose an evolutionary game theoretic framework to model the dynamic information diffusion process in social networks. Specifically, we analyze the framework in uniform degree and non-uniform degree networks and derive the closed-form expressions of the evolutionary stable network states. Moreover, the information diffusion over two special networks, ErdH{o}s-Renyi random network and the Barabasi-Albert scale-free network, are also highlighted. To verify our theoretical analysis, we conduct experiments by using both synthetic networks and real-world Facebook network, as well as real-world information spreading dataset of Twitter and Memetracker. Experiments shows that the proposed game theoretic framework is effective and practical in modeling the social network users information forwarding behaviors.
We propose a relaxation of common belief called factional belief that is suitable for the analysis of strategic coordination on social networks. We show how this definition can be used to analyze revolt games on general graphs, including by giving an efficient algorithm that characterizes a structural result about the possible equilibria of such games. This extends prior work on common knowledge and common belief, which has been too restrictive for use in understanding strategic coordination and cooperation in social network settings.
We introduce a new threshold model of social networks, in which the nodes influenced by their neighbours can adopt one out of several alternatives. We characterize social networks for which adoption of a product by the whole network is possible (respectively necessary) and the ones for which a unique outcome is guaranteed. These characterizations directly yield polynomial time algorithms that allow us to determine whether a given social network satisfies one of the above properties. We also study algorithmic questions for networks without unique outcomes. We show that the problem of determining whether a final network exists in which all nodes adopted some product is NP-complete. In turn, the problems of determining whether a given node adopts some (respectively, a given) product in some (respectively, all) network(s) are either co-NP complete or can be solved in polynomial time. Further, we show that the problem of computing the minimum possible spread of a product is NP-hard to approximate with an approximation ratio better than $Omega(n)$, in contrast to the maximum spread, which is efficiently computable. Finally, we clarify that some of the above problems can be solved in polynomial time when there are only two products.
We analyse strategic, complete information, sequential voting with ordinal preferences over the alternatives. We consider several voting mechanisms: plurality voting and approval voting with deterministic or uniform tie-breaking rules. We show that strategic voting in these voting procedures may lead to a very undesirable outcome: Condorcet winning alternative might be rejected, Condorcet losing alternative might be elected, and Pareto dominated alternative might be elected. These undesirable phenomena occur already with four alternatives and a small number of voters. For the case of three alternatives we present positive and negative results.
Social networks constitute a new platform for information propagation, but its success is crucially dependent on the choice of spreaders who initiate the spreading of information. In this paper, we remove edges in a network at random and the network segments into isolated clusters. The most important nodes in each cluster then form a group of influential spreaders, such that news propagating from them would lead to an extensive coverage and minimal redundancy. The method well utilizes the similarities between the pre-percolated state and the coverage of information propagation in each social cluster to obtain a set of distributed and coordinated spreaders. Our tests on the Facebook networks show that this method outperforms conventional methods based on centrality. The suggested way of identifying influential spreaders thus sheds light on a new paradigm of information propagation on social networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا