Do you want to publish a course? Click here

The Penrose-Fife phase-field model with dynamic boundary conditions

219   0   0.0 ( 0 )
 Added by Giulio Schimperna
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we derive, starting from the basic principles of Thermodynamics, an extended version of the nonconserved Penrose-Fife phase transition model, in which dynamic boundary conditions are considered in order to take into account interactions with walls. Moreover, we study the well-posedness and the asymptotic behavior of the Cauchy problem for the PDE system associated to the model, allowing the phase configuration of the material to be described by a singular function.



rate research

Read More

137 - Giulio Schimperna 2008
The Penrose-Fife system for phase transitions is addressed. Dirichlet boundary conditions for the temperature are assumed. Existence of global and exponential attractors is proved. Differently from preceding contributions, here the energy balance equation is both singular at 0 and degenerate at infinity. For this reason, the dissipativity of the associated dynamical process is not trivial and has to be proved rather carefully.
164 - Ciprian G. Gal 2012
We consider parabolic systems with nonlinear dynamic boundary conditions, for which we give a rigorous derivation. Then, we give them several physical interpretations which includes an interpretation for the porous-medium equation, and for certain reaction-diffusion systems that occur in mathematical biology and ecology. We devise several strategies which imply (uniform)}$L^{p} and}$L^{infty}$ estimates on the solutions for the initial value problems considered.
We study a Penrose-Fife phase transition model coupled with homogeneous Neumann boundary conditions. Improving previous results, we show that the initial value problem for this model admits a unique solution under weak conditions on the initial data. Moreover, we prove asymptotic regularization properties of weak solutions.
128 - J.Z. Farkas , P. Hinow 2010
We consider a linear size-structured population model with diffusion in the size-space. Individuals are recruited into the population at arbitrary sizes. The model is equipped with generalized Wentzell-Robin (or dynamic) boundary conditions. This allows modelling of adhesion at extremely small or large sizes. We establish existence and positivity of solutions by showing that solutions are governed by a positive quasicontractive semigroup of linear operators on the biologically relevant state space. This is carried out via establishing dissipativity of a suitably perturbed semigroup generator. We also show that solutions of the model exhibit balanced exponential growth, that is our model admits a finite dimensional global attractor. In case of strictly positive fertility we are able to establish that solutions in fact exhibit asynchronous exponential growth.
In this paper we analyze a nonlinear parabolic equation characterized by a singular diffusion term describing very fast diffusion effects. The equation is settled in a smooth bounded three-dimensional domain and complemented with a general boundary condition of dynamic type. This type of condition prescribes some kind of mass conservation; hence extinction effects are not expected for solutions that emanate from strictly positive initial data. Our main results regard existence of weak solutions, instantaneous regularization properties, long-time behavior, and, under special conditions, uniqueness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا