No Arabic abstract
We study a Penrose-Fife phase transition model coupled with homogeneous Neumann boundary conditions. Improving previous results, we show that the initial value problem for this model admits a unique solution under weak conditions on the initial data. Moreover, we prove asymptotic regularization properties of weak solutions.
In this paper we derive, starting from the basic principles of Thermodynamics, an extended version of the nonconserved Penrose-Fife phase transition model, in which dynamic boundary conditions are considered in order to take into account interactions with walls. Moreover, we study the well-posedness and the asymptotic behavior of the Cauchy problem for the PDE system associated to the model, allowing the phase configuration of the material to be described by a singular function.
The Penrose-Fife system for phase transitions is addressed. Dirichlet boundary conditions for the temperature are assumed. Existence of global and exponential attractors is proved. Differently from preceding contributions, here the energy balance equation is both singular at 0 and degenerate at infinity. For this reason, the dissipativity of the associated dynamical process is not trivial and has to be proved rather carefully.
We consider finite Morse index solutions to semilinear elliptic questions, and we investigate their smoothness. It is well-known that: - For $n=2$, there exist Morse index $1$ solutions whose $L^infty$ norm goes to infinity. - For $n geq 3$, uniform boundedness holds in the subcritical case for power-type nonlinearities, while for critical nonlinearities the boundedness of the Morse index does not prevent blow-up in $L^infty$. In this paper, we investigate the case of general supercritical nonlinearities inside convex domains, and we prove an interior a priori $L^infty$ bound for finite Morse index solution in the sharp dimensional range $3leq nleq 9$. As a corollary, we obtain uniform bounds for finite Morse index solutions to the Gelfand problem constructed via the continuity method.
In this paper, we consider the initial Neumann boundary value problem for a degenerate kinetic model of Keller--Segel type. The system features a signal-dependent decreasing motility function that vanishes asymptotically, i.e., degeneracies may take place as the concentration of signals tends to infinity. In the present work, we are interested in the boundedness of classical solutions when the motility function satisfies certain decay rate assumptions. Roughly speaking, in the two-dimensional setting, we prove that classical solution is globally bounded if the motility function decreases slower than an exponential speed at high signal concentrations. In higher dimensions, boundedness is obtained when the motility decreases at certain algebraical speed. The proof is based on the comparison methods developed in our previous work cite{FJ19a,FJ19b} together with a modified Alikakos--Moser type iteration. Besides, new estimations involving certain weighted energies are also constructed to establish the boundedness.
This paper studies the following system of differential equations modeling tumor angiogenesis in a bounded smooth domain $Omega subset mathbb{R}^N$ ($N=1,2$): $$label{0} left{begin{array}{ll} p_t=Delta p- ablacdotp p(displaystylefrac alpha {1+c} abla c+rho abla w)+lambda p(1-p),,& xin Omega, t>0, c_t=Delta c-c-mu pc,, &xin Omega, t>0, w_t= gamma p(1-w),,& xin Omega, t>0, end{array}right. $$ where $alpha, rho, lambda, mu$ and $gamma$ are positive parameters. For any reasonably regular initial data $(p_0, c_0, w_0)$, we prove the global boundedness ($L^infty$-norm) of $p$ via an iterative method. Furthermore, we investigate the long-time behavior of solutions to the above system under an additional mild condition, and improve previously known results. In particular, in the one-dimensional case, we show that the solution $(p,c,w)$ converges to $(1,0,1)$ with an explicit exponential rate as time tends to infinity.