Do you want to publish a course? Click here

On a singular heat equation with dynamic boundary conditions

133   0   0.0 ( 0 )
 Added by Giulio Schimperna
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we analyze a nonlinear parabolic equation characterized by a singular diffusion term describing very fast diffusion effects. The equation is settled in a smooth bounded three-dimensional domain and complemented with a general boundary condition of dynamic type. This type of condition prescribes some kind of mass conservation; hence extinction effects are not expected for solutions that emanate from strictly positive initial data. Our main results regard existence of weak solutions, instantaneous regularization properties, long-time behavior, and, under special conditions, uniqueness.

rate research

Read More

In this paper we develop an existence theory for the nonlinear initial-boundary value problem with singular diffusion $partial_t u = text{div}(k(x) abla G(u))$, $u|_{t=0}=u_0$ with Neumann boundary conditions $k(x) abla G(u)cdot u = 0$. Here $xin Bsubset mathbb{R}^d$, a bounded open set with locally Lipchitz boundary, and with $ u$ as the unit outer normal. The function $G$ is Lipschitz continuous and nondecreasing, while $k(x)$ is diagonal matrix. We show that any two weak entropy solutions $u$ and $v$ satisfy $Vert{u(t)-v(t)}Vert_{L^1(B)}le Vert{u|_{t=0}-v|_{t=0}}Vert_{L^1(B)}e^{Ct}$, for almost every $tge 0$, and a constant $C=C(k,G,B)$. If we restrict to the case when the entries $k_i$ of $k$ depend only on the corresponding component, $k_i=k_i(x_i)$, we show that there exists an entropy solution, thus establishing in this case that the problem is well-posed in the sense of Hadamard.
We consider a non-isothermal modified Cahn--Hilliard equation which was previously analyzed by M. Grasselli et al. Such an equation is characterized by an inertial term and a viscous term and it is coupled with a hyperbolic heat equation. The resulting system was studied in the case of no-flux boundary conditions. Here we analyze the case in which the order parameter is subject to a dynamic boundary condition. This assumption requires a more refined strategy to extend the previous results to the present case. More precisely, we first prove the well-posedness for solutions with bounded energy as well as for weak solutions. Then we establish the existence of a global attractor. Finally, we prove the convergence of any given weak solution to a single equilibrium by using a suitable Lojasiewicz--Simon inequality.
172 - Weihua Wang 2021
This paper is concerned with the multiplicity results to a class of $p$-Kirchhoff type elliptic equation with the homogeneous Neumann boundary conditions by an abstract linking lemma due to Br{e}zis and Nirenberg. We obtain the twofold results in subcritical and critical cases, which is a meaningful addition and completeness to the known results about Kirchhoff equation.
96 - J.Z. Farkas , P. Hinow 2010
We consider a linear size-structured population model with diffusion in the size-space. Individuals are recruited into the population at arbitrary sizes. The model is equipped with generalized Wentzell-Robin (or dynamic) boundary conditions. This allows modelling of adhesion at extremely small or large sizes. We establish existence and positivity of solutions by showing that solutions are governed by a positive quasicontractive semigroup of linear operators on the biologically relevant state space. This is carried out via establishing dissipativity of a suitably perturbed semigroup generator. We also show that solutions of the model exhibit balanced exponential growth, that is our model admits a finite dimensional global attractor. In case of strictly positive fertility we are able to establish that solutions in fact exhibit asynchronous exponential growth.
126 - Ciprian G. Gal 2012
We consider parabolic systems with nonlinear dynamic boundary conditions, for which we give a rigorous derivation. Then, we give them several physical interpretations which includes an interpretation for the porous-medium equation, and for certain reaction-diffusion systems that occur in mathematical biology and ecology. We devise several strategies which imply (uniform)}$L^{p} and}$L^{infty}$ estimates on the solutions for the initial value problems considered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا