Do you want to publish a course? Click here

Breakdown electron-hole symmetry in graphene structure with a semiconductor gate

355   0   0.0 ( 0 )
 Added by Fedir Vasko T
 Publication date 2013
  fields Physics
and research's language is English
 Authors F. T. Vasko




Ask ChatGPT about the research

The electron-hole symmetry in the structure graphene - insulating substrate -semiconductor gate is violated due to an asymmetrical drop of potential in the semiconductor gate under positive or negative biases. The gate voltage dependencies of concentration and conductivity are calculated for the case of SiO_2 substrate placed over low- (moderate-) doped p-Si. Similar dependencies of the optical conductivity are analyzed for the case of high-kappa substrates (AlN, Al_2O_3, HfO_2, and ZrO_2). The comparison of our results with experimental data shows a good agreement for both cases.



rate research

Read More

85 - Jiayu Li , Li Lin , Dingran Rui 2017
Graphitic nitrogen-doped graphene is an excellent platform to study scattering processes of massless Dirac fermions by charged impurities, in which high mobility can be preserved due to the absence of lattice defects through direct substitution of carbon atoms in the graphene lattice by nitrogen atoms. In this work, we report on electrical and magnetotransport measurements of high-quality graphitic nitrogen-doped graphene. We show that the substitutional nitrogen dopants in graphene introduce atomically sharp scatters for electrons but long-range Coulomb scatters for holes and, thus, graphitic nitrogen-doped graphene exhibits clear electron-hole asymmetry in transport properties. Dominant scattering processes of charge carriers in graphitic nitrogen-doped graphene are analyzed. It is shown that the electron-hole asymmetry originates from a distinct difference in intervalley scattering of electrons and holes. We have also carried out the magnetotransport measurements of graphitic nitrogen-doped graphene at different temperatures and the temperature dependences of intervalley scattering, intravalley scattering and phase coherent scattering rates are extracted and discussed. Our results provide an evidence for the electron-hole asymmetry in the intervalley scattering induced by substitutional nitrogen dopants in graphene and shine a light on versatile and potential applications of graphitic nitrogen-doped graphene in electronic and valleytronic devices.
Electron optics in the solid state promises new functionality in electronics through the possibility of realizing micrometer-sized interferometers, lenses, collimators and beam splitters that manipulate electrons instead of light. Until now, however, such functionality has been demonstrated exclusively in one-dimensional devices, such as in nanotubes, and in graphene-based devices operating with p-n junctions. In this work, we describe a novel mechanism for realizing electron optics in two dimensions. By studying a two-dimensional Fabry-P{e}rot interferometer based on a resonant cavity formed in an InAs/GaSb double quantum well using p-n junctions, we establish that electron-hole hybridization in band-inverted systems can facilitate coherent interference. With this discovery, we expand the field of electron optics to encompass materials that exhibit band inversion and hybridization, with the promise to surpass the performance of current state-of-the-art devices.
We use low-temperature scanning gate microscopy (SGM) to investigate the breakdown of the quantum Hall regime in an exfoliated bilayer graphene flake. SGM images captured during breakdown exhibit intricate patterns of hotspots where the conductance is strongly affected by the presence of the tip. Our results are well described by a model based on quantum percolation which relates the points of high responsivity to tip-induced scattering between localized Landau levels.
We theoretically analyse the possibility to electrostatically confine electrons in circular quantum dot arrays, impressed on contacted graphene nanoribbons by top gates. Utilising exact numerical techniques, we compute the scattering efficiency of a single dot and demonstrate that for small-sized scatterers the cross-sections are dominated by quantum effects, where resonant scattering leads to a series of quasi-bound dot states. Calculating the conductance and the local density of states for quantum dot superlattices we show that the resonant carrier transport through such graphene-based nanostructures can be easily tuned by varying the gate voltage.
We analyze the effect of screening provided by the additional graphene layer in double layer graphene heterostructures (DLGs) on transport characteristics of DLG devices in the metallic regime. The effect of gate-tunable charge density in the additional layer is two-fold: it provides screening of the long-range potential of charged defects in the system, and screens out Coulomb interactions between charge carriers. We find that the efficiency of defect charge screening is strongly dependent on the concentration and location of defects within the DLG. In particular, only a moderate suppression of electron-hole puddles around the Dirac point induced by the high concentration of remote impurities in the silicon oxide substrate could be achieved. A stronger effect is found on the elastic relaxation rate due to charged defects resulting in mobility strongly dependent on the electron denisty in the additional layer of DLG. We find that the quantum interference correction to the resistivity of graphene is also strongly affected by screening in DLG. In particular, the dephasing rate is strongly suppressed by the additional screening that supresses the amplitude of electron-electron interaction and reduces the diffusion time that electrons spend in proximity of each other. The latter effect combined with screening of elastic relaxation rates results in a peculiar gate tunable weak-localization magnetoresistance and quantum correction to resistivity. We propose suitable experiments to test our theory and discuss the possible relevance of our results to exisiting data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا