We present a detailed study of the electroluminescence of intersubband devices operating in the light-matter strong coupling regime. The devices have been characterized by performing angle resolved spectroscopy that shows two distinct light intensity spots in the momentum-energy phase diagram. These two features of the electroluminescence spectra are associated with photons emitted from the lower polariton branch and from the weak coupling of the intersubband transition with an excited cavity mode. The same electroluminescent active region has been processed into devices with and without the optical microcavity to illustrate the difference between a device operating in the strong and weak coupling regime. The spectra are very well simulated as the product of the polariton optical density of states, and a function describing the energy window in which the polariton states are populated. The voltage evolution of the spectra shows that the strong coupling regime allows the observation of the electroluminescence at energies otherwise inaccessible.
The generation and control of exotic phenomena in organic electroluminescent microcavities, such as polariton lasing and non-linear optical effects, operating in strong and ultra-strong coupling regimes, is still a great challenge. The main obstacles originate from the small number of molecular classes investigated as well as from the absence of an efficient strategy aiming at the maximization of polariton states population. Here we report on bright polariton organic light emitting diodes made of a coumarin fluorescent dye emitting layer, working in the ultra-strong coupling regime up to a coupling strength of 33%. Owing to a high radiative decay emission, a large Stokes shift and a fine cavity-exciton tuning, the radiative pumping mechanism of polariton states has been fully optimized, leading a large portion (25%) of the emissive electrically pumped excitons to be converted in polariton emission. The resulting polariton OLEDs showed electro-optical performances up to 0.2% of external quantum efficiency and 700 cd/m2 of luminance, corresponding to the highest values reported so far for this class of devices. Our work gives clear indications for an effective exploitation of organic polariton dynamics towards the development of novel quantum optoelectronic devices.
The optical properties of transition metal dichalcogenide monolayers are widely dominated by excitons, Coulomb-bound electron-hole pairs. These quasi-particles exhibit giant oscillator strength and give rise to narrow-band, well-pronounced optical transitions, which can be brought into resonance with electromagnetic fields in microcavities and plasmonic nanostructures. Due to the atomic thinness and robustness of the monolayers, their integration in van der Waals heterostructures provides unique opportunities for engineering strong light-matter coupling. We review first results in this emerging field and outline future opportunities and challenges.
It is well known that optical absorption saturation of intersubband transitions in doped semiconductor quantum wells is independent of the introduced doping in the absence of a cavity. When inserting the system in a resonator, we show that this remains valid only in the weak light-matter coupling regime. In the strong light-matter coupling regime instead, we demonstrate that absorption saturation is no more doping independent and it is instead tailorable. Based on this unified formalism for saturation in weak and strong coupling, we provide designs for semiconductor saturable absorption (SESAM) mirrors and bistable systems operating in the mid-infrared range of the electromagnetic spectrum and with extremely low saturation intensities. Countering intuition, we show that the most suitable region to exploit low saturation intensities is not the ultra-strong coupling regime, but is instead at the onset of strong light-matter coupling.
Exciton condensation in an electron-hole bilayer system of monolayer transition metal dichalcogenides is analyzed at three different levels of theory to account for screening and quasiparticle renormalization. The large effective masses of the transition metal dichalcogenides place them in a strong coupling regime. In this regime, mean field (MF) theory with either an unscreened or screened interlayer interaction predicts a room temperature condensate. Interlayer and intralayer interactions renormalize the quasiparticle dispersion, and this effect is included in a GW approximation. The renormalization reverses the trends predicted from the unscreened or screened MF theories. In the strong coupling regime, intralayer interactions have a large impact on the magnitude of the order parameter and its functional dependencies on effective mass and carrier density.
The optical response of a heavily doped quantum well, with two occupied subbands, has been investigated as a function of the electronic density. It is shown that the two optically active transitions are mutually coupled by dipole-dipole Coulomb interaction, which strongly renormalizes their absorption amplitude. In order to demonstrate this effect, we have measured a set of optical spectra on a device in which the electronic density can be tuned by the application of a gate voltage. Our results show that the absorption spectra can be correctly described only by taking into account the Coulomb coupling between the two transitions. As a consequence, the optical dipoles originating from intersubband transitions are not independent, but rather coupled oscillators with an adjustable strength.