Do you want to publish a course? Click here

Magnetic properties changes of MnAs thin films irradiated with highly charged ions

140   0   0.0 ( 0 )
 Added by Martino Trassinelli
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first investigation on the effect of highly charged ion bombardment on a manganese arsenide thin film. The MnAs films, 150 nm thick, are irradiated with 90 keV Ne$^{9+}$ ions with a dose varying from $1.6times10^{12}$ to $1.6times10^{15}$ ions/cm$^2$. The structural and magnetic properties of the film after irradiation are investigated using different techniques, namely, X-ray diffraction, magneto-optic Kerr effect and magnetic force microscope. Preliminary results are presented. From the study of the lattice spacing, we measure a change on the film structure that depends on the received dose, similarly to previous studies with other materials. Investigations on the surface show a strong modification of its magnetic properties.



rate research

Read More

107 - S Cervera 2015
In a recent experiment we demonstrated the possibility to suppress the thermal hysteresis of the phase transition in giant magnetocaloric MnAs thin film by interaction with slow highly charged ions (Ne 9+ at 90 keV) [1]. This phenomenon has a major impact for possible applications in magnetic refrigeration and thus its reproducibility and robustness are of prime importance. Here we present some new investigations about the origin and the nature of the irradiation-induced defects responsible for the thermal hysteresis suppression. Considering in particular two samples that receive different ion fluences (two order of magnitude of difference), we investigate the reliability of this process. The stability of the irradiation-induced defects with respect to a soft annealing is studied by X-ray diffraction and magnetometry measurements, which provide some new insights on the mechanisms involved.
The magnetic coupling between iron and alpha - MnAs in the epitaxial system Fe/MnAs/GaAs(001) has been studied at the sub-micron scale, using element selective x-ray photoemission electron microscopy. At room temperature, MnAs layers display ridges and grooves, alternating alpha (magnetic) and beta (non-magnetic) phases. The self-organised microstructure of MnAs and the stray fields that it generates govern the local alignment between the Fe and alpha - MnAs magnetization directions, which is mostly antiparallel with a marked dependence upon the magnetic domain size.
Mechanical control of magnetic properties in magnetostrictive thin films offers the unexplored opportunity to employ surface wave acoustics in such a way that acoustic triggers dynamic magnetic effects. The strain-induced modulation of the magnetic anisotropy can play the role of a high frequency varying effective magnetic field leading to ultrasonic tuning of electronic and magnetic properties of nanostructured materials, eventually integrated in semiconductor technology. Here, we report about the opportunity to employ surface acoustic waves to trigger magnetocaloric effect in MnAs(100nm)/GaAs(001) thin films. During the MnAs magnetostructural phase transition, in an interval range around room temperature (0{deg}C - 60{deg}C), ultrasonic waves (170 MHz) are strongly attenuated by the phase coexistence (up to 150 dB/cm). We show that the giant magnetocaloric effect of MnAs is responsible of the observed phenomenon. By a simple anelastic model we describe the temperature and the external magnetic field dependence of such a huge ultrasound attenuation. Strain-manipulation of the magnetocaloric effect could be a further interesting route for dynamic and static caloritronics and spintronics applications in semiconductor technology.
The integration of ferromagnetic and ferroelectric materials into hybrid heterostructures yields multifunctional systems with improved or novel functionality. We here report on the structural, electronic and magnetic properties of the ferromagnetic double perovskite Sr2CrReO6, grown as epitaxial thin film onto ferroelectric BaTiO3. As a function of temperature, the crystal-structure of BaTiO3 undergoes phase transitions, which induce qualitative changes in the magnetic anisotropy of the ferromagnet. We observe abrupt changes in the coercive field of up to 1.2T along with resistance changes of up to 6.5%. These results are attributed to the high sensitivity of the double perovskites to mechanical deformation.
Porous single layer molybdenum disulfide (MoS$_2$) is a promising material for applications such as DNA sequencing and water desalination. In this work, we introduce irradiation with highly charged ions (HCIs) as a new technique to fabricate well-defined pores in MoS$_2$. Surprisingly, we find a linear increase of the pore creation efficiency over a broad range of potential energies. Comparison to atomistic simulations reveals the critical role of energy deposition from the ion to the material through electronic excitation in the defect creation process, and suggests an enrichment in molybdenum in the vicinity of the pore edges at least for ions with low potential energies. Analysis of the irradiated samples with atomic resolution scanning transmission electron microscopy reveals a clear dependence of the pore size on the potential energy of the projectiles, establishing irradiation with highly charged ions as an effective method to create pores with narrow size distributions and radii between ca. 0.3 and 3 nm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا