For n>2, we prove the mod 2 cohomology of the finite Chevalley group Spin_n(F_q) is isomorphic to that of the classifying space of the loop group of the spin group Spin(n).
Among the generalizations of Serres theorem on the homotopy groups of a finite complex we isolate the one proposed by Dwyer and Wilkerson. Even though the spaces they consider must be 2-connected, we show that it can be used to both recover known results and obtain new theorems about p-completed classifying spaces.
A 1-truncated compact Lie group is any extension of a finite group by a torus. In this note we compute the homotopy types of $Map_*(BG,BH)$, $Map(BG,BH)$, and $Map(EG, B_GH)^G$ for compact Lie groups $G$ and $H$ with $H$ 1-truncated, showing that they are computed entirely in terms of spaces of homomorphisms from $G$ to $H$. These results generalize the well-known case when $H$ is finite, and the case of $H$ compact abelian due to Lashof, May, and Segal.
In this paper we study the cohomology of (strict) Lie 2-groups. We obtain an explicit Bott-Shulman type map in the case of a Lie 2-group corresponding to the crossed module $Ato 1$. The cohomology of the Lie 2-groups corresponding to the universal crossed modules $Gto Aut(G)$ and $Gto Aut^+(G)$ is the abutment of a spectral sequence involving the cohomology of $GL(n,Z)$ and $SL(n,Z)$. When the dimension of the center of $G$ is less than 3, we compute explicitly these cohomology groups. We also compute the cohomology of the Lie 2-group corresponding to a crossed module $Gto H$ whose kernel is compact and cokernel is connected, simply connected and compact and apply the result to the string 2-group.
We determine the mod $2$ cohomology over the Steenrod algebra of the classifying spaces of the free loop groups $LG$ for compact groups $G=Spin(7)$, $Spin(8)$, $Spin(9)$, and $F_4$. Then, we show that they are isomorphic as algebras over the Steenrod algebra to the mod $2$ cohomology of the corresponding Chevalley groups of type $G(q)$, where $q$ is an odd prime power. In a similar manner, we compute the cohomology of the free loop space over $BDI(4)$ and show that it is isomorphic to that of $BSol(q)$ as algebras over the Steenrod algebra.
The goal of this paper is to construct quantum analogues of Chevalley groups inside completions of quantum groups or, more precisely, inside completions of Hall algebras of finitary categories. In particular, we obtain pentagonal and other identities in the quantum Chevalley groups which generalize their classical counterparts and explain Faddeev-Volkov quantum dilogarithmic identities and their recent generalizations due to Keller