Do you want to publish a course? Click here

Dispersionless optical activity in metamaterials

171   0   0.0 ( 0 )
 Added by Kirsty Hannam
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a chiral metamaterial with strong, non-resonant optical activity, and very low polarization ellipticity. We achieve this by combining a meta-atom and its complementary structure into a meta-molecule, resulting in the coupling of magnetic and electric dipole responses. In contrast to either a pair of crosses, or complementary crosses, this structure has low dispersion in the optical activity at the transmission resonance. We also study the excitation mechanism in this structure, and optimize the optical activity through changing the twist angle.



rate research

Read More

We study theoretically and experimentally a novel type of metamaterial with hybrid elements composed of twisted pairs of cross-shaped meta-atoms and their complements. We reveal that such two-layer metasurfaces demonstrate large, dispersionless optical activity at the transmission resonance accompanied by very low ellipticity. We develop a retrieval procedure to determine the effective material parameters for this structure, which has lower-order symmetry ($mathrm {C}_4$) than other commonly studied chiral structures. We verify our new theoretical approach by reproducing numerical and experimental scattering parameters.
We investigate the influence of different metals on the electromagnetic response of fishnet metamaterials in the optical regime.We found, instead of using a Drude model, metals with a dielectric function from experimentally measured data should be applied to correctly predict the behavior of optical metamaterials. Through comparison of the performance for fishnet metamaterials made with different metals (i.e., gold, copper, and silver), we found silver is the best choice for the metallic parts compared to other metals, because silver allows for the strongest negative-permeability resonance and, hence, for optical fishnet metamaterials with a high figure-of-merit. Our study offers a valuable reference in the designs for optical metamaterials with optimized properties.
Optical activity is ubiquitous across natural and artificial media and is conventionally understood in terms of scattering from electric and magnetic moments. Here we demonstrate experimentally and confirm numerically a type of optical activity that cannot be attributed to electric and magnetic multipoles. We show that our observations can only be accounted for by the inclusion of the toroidal dipole moment, the first term of the recently established peculiar family of toroidal multipoles.
We investigate non-diffracting hollow-core nonlinear optical waves propagating in a layered nanoscaled metal-dielectric structure characterized by a very small average linear dielectric permittivity (Nonlinear Epsilon-Near-Zero metamaterial). We analytically show that hollow-core waves have a power flow exactly vanishing at a central region and exhibiting a sharp sloped profile at the edges of the regions surrounding the core. Physically, the absence of power flow at the core region is due to the vanishing of the transverse component of the electric displacement field, condition that can be satisfied by the full compensation between the nonlinear and linear dielectric contribution.
We propose novel quantum antennas and metamaterials with strong magnetic response at optical frequencies. Our design is based on the arrangement of natural atoms with only electric dipole transition moments at distances smaller than a wavelength of light but much larger than their physical size. In particular, we show that an atomic dimer can serve as a magnetic antenna at its antisymmetric mode to enhance the decay rate of a magnetic transition in its vicinity by several orders of magnitude. Furthermore, we study metasurfaces composed of atomic bilayers with and without cavities and show that they can fully reflect the electric and magnetic fields of light, thus, forming nearly perfect electric/magnetic mirrors. The proposed quantum metamaterials can be fabricated with available state-of-the-art technologies and promise several applications both in classical optics and quantum engineering.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا