Do you want to publish a course? Click here

Electroweak Symmetry Breaking and the Higgs Boson: Confronting Theories at Colliders

182   0   0.0 ( 0 )
 Added by Jamison Galloway
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

In this review, we discuss methods of parsing direct and indirect information from collider experiments regarding the Higgs boson and describe simple ways in which experimental likelihoods can be consistently reconstructed and interfaced with model predictions in pertinent parameter spaces. Ultimately these methods are used to constrain a five-dimensional parameter space describing a model-independent framework for electroweak symmetry breaking. We review prevalent scenarios for extending the electroweak symmetry breaking sector relative to the Standard Model and emphasize their predictions for nonstandard Higgs phenomenology that could be observed in LHC data if naturalness is realized in particular ways. Specifically we identify how measurements of Higgs couplings can be used to imply the existence of new physics at particular scales within various contexts, highlighting some parameter spaces of interest in order to give examples of how the data surrounding the new state can most effectively be used to constrain specific models of weak scale physics.

rate research

Read More

94 - G. Belanger 1995
The physics potential of a high-energy photon collider is reviewed. The emphasis is put on aspects related to the symmetry breaking sector, including Higgs searches and production of longitudinal vector bosons.
225 - S. Actis , G. Passarino , C. Sturm 2008
Results for the complete NLO electroweak corrections to Standard Model Higgs production via gluon fusion are included in the total cross section for hadronic collisions. Artificially large threshold effects are avoided working in the complex-mass scheme. The numerical impact at LHC (Tevatron) energies is explored for Higgs mass values up to 500 GeV (200 GeV). Assuming a complete factorization of the electroweak corrections, one finds a +5 % shift with respect to the NNLO QCD cross section for a Higgs mass of 120 GeV both at the LHC and the Tevatron. Adopting two different factorization schemes for the electroweak effects, an estimate of the corresponding total theoretical uncertainty is computed.
In this study we consider an extension of the Standard Model with a complex hypercharge zero triplet scalar. In this scenario one of the charged Higgs bosons remains purely triplet and does not couple to the fermions, making it elusive at colliders. Also the physical pseudoscalar is a pure triplet and this purity makes it a suitable dark matter candidate without the need of discrete symmetries, unlike other extensions. The bounds from relic density and direct dark matter search experiments select its mass to be $sim 1.35-1.60$ TeV. The pure triplet charged Higgs gives rise to displaced signatures and their sensitivity at LHC and MATHUSLA have been studied. The prospects at present and future hadron/muon colliders of such exotic scalars are pointed out by calculating their productions cross-section and dominant decay modes. We present also the expected reach for the triplet states at a multi-TeV muon collider.
Models with extended Higgs boson sectors are of prime importance for investigating the mechanism of electroweak symmetry breaking for Higgs decays into four fermions and for Higgs-production in association with a vector bosons. In the framework of the Two-Higgs-Doublet Model using two scenarios obtained from the experimental measurements we presented next-to-leading-order results on the four-fermion decays of light CP-even Higgs boson, $h rightarrow 4f$. With the help of Monte Carlo program Prophecy 4f 3.0, we calculated the values $Gamma= Gamma_{EW} /left(Gamma_{EW}+Gamma_{SM}right)$ and $Gamma= Gamma_{EW+QCD} /left(Gamma_{EW+QCD}+Gamma_{SM}right)$ for Higgs boson decay channels $ H rightarrow u_{mu} overline{mu} e overline{ u_e}$, $mu overline{mu} e overline{e}$, $e overline{e} e overline{e}$. We didnt find significant difference when accounting QCD corrections to EW processes in the decay modes of Higgs boson. Using computer programs Pythia 8.2 and FeynHiggs we calculated the following values: $sigma(VBH)BR(Hrightarrow ZZ)$ and $sigma(VBF)BR(H rightarrow WW)$ for VBF production processes, $sigma(ggH)BR(H rightarrow WW)$ and $sigma(ggH)BR(H rightarrow ZZ)$ for gluon fusion production process at 13 and 14 TeV and found good agreement with experimental data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا