No Arabic abstract
We present the design and analysis of a multi-level game-theoretic model of hierarchical policy-making, inspired by policy responses to the COVID-19 pandemic. Our model captures the potentially mismatched priorities among a hierarchy of policy-makers (e.g., federal, state, and local governments) with respect to two main cost components that have opposite dependence on the policy strength, such as post-intervention infection rates and the cost of policy implementation. Our model further includes a crucial third factor in decisions: a cost of non-compliance with the policy-maker immediately above in the hierarchy, such as non-compliance of state with federal policies. Our first contribution is a closed-form approximation of a recently published agent-based model to compute the number of infections for any implemented policy. Second, we present a novel equilibrium selection criterion that addresses common issues with equilibrium multiplicity in our setting. Third, we propose a hierarchical algorithm based on best response dynamics for computing an approximate equilibrium of the hierarchical policy-making game consistent with our solution concept. Finally, we present an empirical investigation of equilibrium policy strategies in this game in terms of the extent of free riding as well as fairness in the distribution of costs depending on game parameters such as the degree of centralization and disagreements about policy priorities among the agents.
In this paper, we propose a decision making algorithm for autonomous vehicle control at a roundabout intersection. The algorithm is based on a game-theoretic model representing the interactions between the ego vehicle and an opponent vehicle, and adapts to an online estimated driver type of the opponent vehicle. Simulation results are reported.
Coded distributed computing (CDC) has emerged as a promising approach because it enables computation tasks to be carried out in a distributed manner while mitigating straggler effects, which often account for the long overall completion times. Specifically, by using polynomial codes, computed results from only a subset of edge servers can be used to reconstruct the final result. However, incentive issues have not been studied systematically for the edge servers to complete the CDC tasks. In this paper, we propose a tractable two-level game-theoretic approach to incentivize the edge servers to complete the CDC tasks. Specifically, in the lower level, a hedonic coalition formation game is formulated where the edge servers share their resources within their coalitions. By forming coalitions, the edge servers have more Central Processing Unit (CPU) power to complete the computation tasks. In the upper level, given the CPU power of the coalitions of edge servers, an all-pay auction is designed to incentivize the edge servers to participate in the CDC tasks. In the all-pay auction, the bids of the edge servers are represented by the allocation of their CPU power to the CDC tasks. The all-pay auction is designed to maximize the utility of the cloud server by determining the allocation of rewards to the winners. Simulation results show that the edge servers are incentivized to allocate more CPU power when multiple rewards are offered, i.e., there are multiple winners, instead of rewarding only the edge server with the largest CPU power allocation. Besides, the utility of the cloud server is maximized when it offers multiple homogeneous rewards, instead of heterogeneous rewards.
Federated learning is a distributed learning paradigm where multiple agents, each only with access to local data, jointly learn a global model. There has recently been an explosion of research aiming not only to improve the accuracy rates of federated learning, but also provide certain guarantees around social good properties such as total error. One branch of this research has taken a game-theoretic approach, and in particular, prior work has viewed federated learning as a hedonic game, where error-minimizing players arrange themselves into federating coalitions. This past work proves the existence of stable coalition partitions, but leaves open a wide range of questions, including how far from optimal these stable solutions are. In this work, we motivate and define a notion of optimality given by the average error rates among federating agents (players). First, we provide and prove the correctness of an efficient algorithm to calculate an optimal (error minimizing) arrangement of players. Next, we analyze the relationship between the stability and optimality of an arrangement. First, we show that for some regions of parameter space, all stable arrangements are optimal (Price of Anarchy equal to 1). However, we show this is not true for all settings: there exist examples of stable arrangements with higher cost than optimal (Price of Anarchy greater than 1). Finally, we give the first constant-factor bound on the performance gap between stability and optimality, proving that the total error of the worst stable solution can be no higher than 9 times the total error of an optimal solution (Price of Anarchy bound of 9).
Complex networks tend to display communities which are groups of nodes cohesively connected among themselves in one group and sparsely connected to the remainder of the network. Detecting such communities is an important computational problem, since it provides an insight into the functionality of networks. Further, investigating community structure in a dynamic network, where the network is subject to change, is even more challenging. This paper presents a game-theoretical technique for detecting community structures in dynamic as well as static complex networks. In our method, each node takes the role of a player that attempts to gain a higher payoff by joining one or more communities or switching between them. The goal of the game is to reveal community structure formed by these players by finding a Nash-equilibrium point among them. To the best of our knowledge, this is the first game-theoretic algorithm which is able to extract overlapping communities from either static or dynamic networks. We present the experimental results illustrating the effectiveness of the proposed method on both synthetic and real-world networks.
We introduce a game-theoretic approach to the study of recommendation systems with strategic content providers. Such systems should be fair and stable. Showing that traditional approaches fail to satisfy these requirements, we propose the Shapley mediator. We show that the Shapley mediator fulfills the fairness and stability requirements, runs in linear time, and is the only economically efficient mechanism satisfying these properties.