Do you want to publish a course? Click here

B-physics from lattice QCD...with a twist

152   0   0.0 ( 0 )
 Added by Andrea Shindler
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We present a precise lattice QCD determination of the b-quark mass, of the B and Bs decay constants and first results for the B-meson bag parameters. For our computation we employ the so-called ratio method and our results benefit from the use of improved interpolating operators for the B-mesons. QCD calculations are performed with Nf = 2 dynamical light-quarks at four values of the lattice spacing and the results are extrapolated to the continuum limit. The preliminary results are mb(mb) = 4.35(12) GeV for the MSbar b-quark mass, fBs = 234(6) MeV and fB = 197(10) MeV for the B-meson decay constants, BBs(mb) = 0.90(5) and BB(mb) = 0.87(5) for the B-meson bag parameters.



rate research

Read More

We study the exclusive semileptonic $B$-meson decays $Bto K(pi)ell^+ell^-$, $Bto K(pi) ubar u$, and $Btopitau u$, computing observables in the Standard model using the recent lattice-QCD results for the underlying form factors from the Fermilab Lattice and MILC Collaborations. These processes provide theoretically clean windows into physics beyond the Standard Model because the hadronic uncertainties are now under good control for suitably binned observables. For example, the resulting partially integrated branching fractions for $Btopimu^+mu^-$ and $Bto Kmu^+mu^-$ outside the charmonium resonance region are 1-2$sigma$ higher than the LHCb Collaborations recent measurements, where the theoretical and experimental errors are commensurate. The combined tension is 1.7$sigma$. Combining the Standard-Model rates with LHCbs measurements yields values for the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements $|V_{td}|=7.45{(69)}times10^{-3}$, $|V_{ts}|=35.7(1.5)times10^{-3}$, and $|V_{td}/V_{ts}|=0.201{(20)}$, which are compatible with the values obtained from neutral $B_{(s)}$-meson oscillations and have competitive uncertainties. Alternatively, taking the CKM matrix elements from unitarity, we constrain new-physics contributions at the electroweak scale. The constraints on the Wilson coefficients ${rm Re}(C_9)$ and ${rm Re}(C_{10})$ from $Btopimu^+mu^-$ and $Bto Kmu^+mu^-$ are competitive with those from $Bto K^* mu^+mu^-$, and display a 2.0$sigma$ tension with the Standard Model. Our predictions for $Bto K(pi) ubar u$ and $Btopitau u$ are close to the current experimental limits.
We update QCD calculations of $B to pi, K$ form factors at large hadronic recoil by including the subleading-power corrections from the higher-twist $B$-meson light-cone distribution amplitudes (LCDAs) up to the twist-six accuracy and the strange-quark mass effects at leading-power in $Lambda/m_b$ from the twist-two $B$-meson LCDA $phi_B^{+}(omega, mu)$. The higher-twist corrections from both the two-particle and three-particle $B$-meson LCDAs are computed from the light-cone QCD sum rules (LCSR) at tree level. In particular, we construct the local duality model for the twist-five and -six $B$-meson LCDAs, in agreement with the corresponding asymptotic behaviours at small quark and gluon momenta, employing the QCD sum rules in heavy quark effective theory at leading order in $alpha_s$. The strange quark mass effects in semileptonic $B to K$ form factors yield the leading-power contribution in the heavy quark expansion, consistent with the power-counting analysis in soft-collinear effective theory, and they are also computed from the LCSR approach due to the appearance of the rapidity singularities. We further explore the phenomenological aspects of the semileptonic $B to pi ell u$ decays and the rare exclusive processes $B to K u u$, including the determination of the CKM matrix element $|V_{ub}|$, the normalized differential $q^2$ distributions and precision observables defined by the ratios of branching fractions for the above-mentioned two channels in the same intervals of $q^2$.
122 - Wolfgang Bietenholz 2016
We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-perturbative level. We comment on selected results, with a focus on hadron masses and the link to Chiral Perturbation Theory. At last we address two outstanding issues: topological freezing and the sign problem.
163 - Oliver Witzel 2020
We present an overview of state of the art lattice quantum chromodynamcis calculations for heavy-light quantities. Special focus is given to the calculation of form factors for semi-leptonic decays of $B_{(s)}$ and $D$ mesons, the extraction of the Cabibbo-Kobayashi-Maskawa matrix elements $|V_{ub}|$ and $|V_{cb}|$ as well as the determination of $R(D^{(*)})$ testing the universality of lepton flavors in $bto c$ transitions. In addition we report on the determination of $b$ and $c$ quark masses as well as on neutral $B_{(s)}$ meson mixing. Recent results are summarized and new developments highlighted.
We calculate the kaon semileptonic form factor $f_+(0)$ from lattice QCD, working, for the first time, at the physical light-quark masses. We use gauge configurations generated by the MILC collaboration with $N_f=2+1+1$ flavors of sea quarks, which incorporate the effects of dynamical charm quarks as well as those of up, down, and strange. We employ data at three lattice spacings to extrapolate to the continuum limit. Our result, $f_+(0) = 0.9704(32)$, where the error is the total statistical plus systematic uncertainty added in quadrature, is the most precise determination to date. Combining our result with the latest experimental measurements of $K$ semileptonic decays, one obtains the Cabibbo-Kobayashi-Maskawa matrix element $|V_{us}|=0.22290(74)(52)$, where the first error is from $f_+(0)$ and the second one is from experiment. In the first-row test of Cabibbo-Kobayashi-Maskawa unitarity, the error stemming from $|V_{us}|$ is now comparable to that from $|V_{ud}|$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا