Do you want to publish a course? Click here

Energy Measures of Harmonic Functions on the Sierpinski Gasket

121   0   0.0 ( 0 )
 Added by Ching Wei Ho
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We study energy measures on SG based on harmonic functions. We characterize the positive energy measures through studying the bounds of Radon-Nikodym derivatives with respect to the Kusuoka measure. We prove a limited continuity of the derivative on the graph $V_*$ and express the average value of the derivative on a whole cell as a weighted average of the values on the boundary vertices. We also prove some characterizations and properties of the weights.



rate research

Read More

In the case of some fractals, sampling with average values on cells is more natural than sampling on points. In this paper we investigate this method of sampling on $SG$ and $SG_{3}$. In the former, we show that the cell graph approximations have the spectral decimation property and prove an analog of the Shannon sampling theorem.. We also investigate the numerical properties of these sampling functions and make conjectures which allow us to look at sampling on infinite blowups of $SG$. In the case of $SG_{3}$, we show that the cell graphs have the spectral decimation property, but show that it is not useful for proving an analogous sampling theorem.
173 - Shu-Chiuan Chang 2010
We study the number of acyclic orientations on the generalized two-dimensional Sierpinski gasket $SG_{2,b}(n)$ at stage $n$ with $b$ equal to two and three, and determine the asymptotic behaviors. We also derive upper bounds for the asymptotic growth constants for $SG_{2,b}$ and $d$-dimensional Sierpinski gasket $SG_d$.
We derive exactly the number of Hamiltonian paths H(n) on the two dimensional Sierpinski gasket SG(n) at stage $n$, whose asymptotic behavior is given by $frac{sqrt{3}(2sqrt{3})^{3^{n-1}}}{3} times (frac{5^2 times 7^2 times 17^2}{2^{12} times 3^5 times 13})(16)^n$. We also obtain the number of Hamiltonian paths with one end at a certain outmost vertex of SG(n), with asymptotic behavior $frac {sqrt{3}(2sqrt{3})^{3^{n-1}}}{3} times (frac {7 times 17}{2^4 times 3^3})4^n$. The distribution of Hamiltonian paths on SG(n) with one end at a certain outmost vertex and the other end at an arbitrary vertex of SG(n) is investigated. We rigorously prove that the exponent for the mean $ell$ displacement between the two end vertices of such Hamiltonian paths on SG(n) is $ell log 2 / log 3$ for $ell>0$.
127 - Shiping Cao , Hua Qiu 2020
We construct a strongly local regular Dirichlet form on the golden ratio Sierpinski gasket, which is a self-similar set without any finitely ramified cell structure, via a study on the trace of electrical networks on an infinite graph. The Dirichlet form is self-similar in the sense of an infinite iterated function system, and is decimation invariant with respect to a graph-directed construction. A theorem of uniqueness is also provided. Lastly, the associated process satisfies the two-sided sub-Gaussian heat kernel estimate.
The number of independent sets is equivalent to the partition function of the hard-core lattice gas model with nearest-neighbor exclusion and unit activity. We study the number of independent sets $m_{d,b}(n)$ on the generalized Sierpinski gasket $SG_{d,b}(n)$ at stage $n$ with dimension $d$ equal to two, three and four for $b=2$, and layer $b$ equal to three for $d=2$. The upper and lower bounds for the asymptotic growth constant, defined as $z_{SG_{d,b}}=lim_{v to infty} ln m_{d,b}(n)/v$ where $v$ is the number of vertices, on these Sierpinski gaskets are derived in terms of the results at a certain stage. The numerical values of these $z_{SG_{d,b}}$ are evaluated with more than a hundred significant figures accurate. We also conjecture the upper and lower bounds for the asymptotic growth constant $z_{SG_{d,2}}$ with general $d$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا