Do you want to publish a course? Click here

Brownian motion on the golden ratio Sierpinski gasket

128   0   0.0 ( 0 )
 Added by Hua Qiu
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We construct a strongly local regular Dirichlet form on the golden ratio Sierpinski gasket, which is a self-similar set without any finitely ramified cell structure, via a study on the trace of electrical networks on an infinite graph. The Dirichlet form is self-similar in the sense of an infinite iterated function system, and is decimation invariant with respect to a graph-directed construction. A theorem of uniqueness is also provided. Lastly, the associated process satisfies the two-sided sub-Gaussian heat kernel estimate.



rate research

Read More

The stretched Sierpinski gasket, SSG for short, is the space obtained by replacing every branching point of the Sierpinski gasket by an interval. It has also been called deformed Sierpinski gasket or Hanoi attractor. As a result, it is the closure of a countable union of intervals and one might expect that a diffusion on SSG is essentially a kind of gluing of the Brownian motions on the intervals. In fact, there have been several works in this direction. There still remains, however, reminiscence of the Sierpinski gasket in the geometric structure of SSG and the same should therefore be expected for diffusions. This paper shows that this is the case. In this work, we identify all the completely symmetric resistance forms on SSG. A completely symmetric resistance form is a resistance form whose restriction to every contractive copy of SSG in itself is invariant under all geometrical symmetries of the copy, which constitute the symmetry group of the triangle. We prove that completely symmetric resistance forms on SSG can be sums of the Dirichlet integrals on the intervals with some particular weights, or a linear combination of a resistance form of the former kind and the standard resistance form on the Sierpinski gasket.
89 - Shiping Cao , Hua Qiu 2021
We construct symmetric self-similar Dirichlet forms on unconstrained Sierpinski carpets, which are natural extension of planner Sierpinski carpets by allowing the small cells to live off the $1/k$ grids. The intersection of two cells can be a line segment of irrational length, and we also drop the non-diagonal assumption in this recurrent setting. The proof of the existence is purely analytic. A uniqueness theorem is also provided. Moreover, the additional freedom of unconstrained Sierpinski carpets allows us to slide the cells around. In this situation, we view unconstrained Sierpinski carpets as moving fractals, and we prove that the self-similar Dirichlet forms will vary continuously in a $Gamma$-convergence sense.
173 - Shu-Chiuan Chang 2010
We study the number of acyclic orientations on the generalized two-dimensional Sierpinski gasket $SG_{2,b}(n)$ at stage $n$ with $b$ equal to two and three, and determine the asymptotic behaviors. We also derive upper bounds for the asymptotic growth constants for $SG_{2,b}$ and $d$-dimensional Sierpinski gasket $SG_d$.
We derive exactly the number of Hamiltonian paths H(n) on the two dimensional Sierpinski gasket SG(n) at stage $n$, whose asymptotic behavior is given by $frac{sqrt{3}(2sqrt{3})^{3^{n-1}}}{3} times (frac{5^2 times 7^2 times 17^2}{2^{12} times 3^5 times 13})(16)^n$. We also obtain the number of Hamiltonian paths with one end at a certain outmost vertex of SG(n), with asymptotic behavior $frac {sqrt{3}(2sqrt{3})^{3^{n-1}}}{3} times (frac {7 times 17}{2^4 times 3^3})4^n$. The distribution of Hamiltonian paths on SG(n) with one end at a certain outmost vertex and the other end at an arbitrary vertex of SG(n) is investigated. We rigorously prove that the exponent for the mean $ell$ displacement between the two end vertices of such Hamiltonian paths on SG(n) is $ell log 2 / log 3$ for $ell>0$.
The number of independent sets is equivalent to the partition function of the hard-core lattice gas model with nearest-neighbor exclusion and unit activity. We study the number of independent sets $m_{d,b}(n)$ on the generalized Sierpinski gasket $SG_{d,b}(n)$ at stage $n$ with dimension $d$ equal to two, three and four for $b=2$, and layer $b$ equal to three for $d=2$. The upper and lower bounds for the asymptotic growth constant, defined as $z_{SG_{d,b}}=lim_{v to infty} ln m_{d,b}(n)/v$ where $v$ is the number of vertices, on these Sierpinski gaskets are derived in terms of the results at a certain stage. The numerical values of these $z_{SG_{d,b}}$ are evaluated with more than a hundred significant figures accurate. We also conjecture the upper and lower bounds for the asymptotic growth constant $z_{SG_{d,2}}$ with general $d$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا