Do you want to publish a course? Click here

Stochastic approximation of lamplighter metrics

75   0   0.0 ( 0 )
 Added by Florent Baudier
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We observe that embeddings into random metrics can be fruitfully used to study the $L_1$-embeddability of lamplighter graphs or groups, and more generally lamplighter metric spaces. Once this connection has been established, several new upper bound estimates on the $L_1$-distortion of lamplighter metrics follow from known related estimates about stochastic embeddings into dominating tree-metrics. For instance, every lamplighter metric on a $n$-point metric space embeds bi-Lipschitzly into $L_1$ with distortion $O(log n)$. In particular, for every finite group $G$ the lamplighter group $H = mathbb{Z}_2wr G$ bi-Lipschitzly embeds into $L_1$ with distortion $O(loglog|H|)$. In the case where the ground space in the lamplighter construction is a graph with some topological restrictions, better distortion estimates can be achieved. Finally, we discuss how a coarse embedding into $L_1$ of the lamplighter group over the $d$-dimensional infinite lattice $mathbb{Z}^d$ can be constructed from bi-Lipschitz embeddings of the lamplighter graphs over finite $d$-dimensional grids, and we include a remark on Lipschitz free spaces over finite metric spaces.



rate research

Read More

We give a construction of direct limits in the category of complete metric scalable groups and provide sufficient conditions for the limit to be an infinite-dimensional Carnot group. We also prove a Rademacher-type theorem for such limits.
In this article we start a systematic study of the bi-Lipschitz geometry of lamplighter graphs. We prove that lamplighter graphs over trees bi-Lipschitzly embed into Hamming cubes with distortion at most~$6$. It follows that lamplighter graphs over countable trees bi-Lipschitzly embed into $ell_1$. We study the metric behaviour of the operation of taking the lamplighter graph over the vertex-coalescence of two graphs. Based on this analysis, we provide metric characterizations of superreflexivity in terms of lamplighter graphs over star graphs or rose graphs. Finally, we show that the presence of a clique in a graph implies the presence of a Hamming cube in the lamplighter graph over it. An application is a characterization in terms of a sequence of graphs with uniformly bounded degree of the notion of trivial Bourgain-Milman-Wolfson type for arbitrary metric spaces, similar to Ostrovskiis characterization previously obtained in cite{ostrovskii:11}.
Given a domain $G subsetneq Rn$ we study the quasihyperbolic and the distance ratio metrics of $G$ and their connection to the corresponding metrics of a subdomain $D subset G$. In each case, distances in the subdomain are always larger than in the original domain. Our goal is to show that, in several cases, one can prove a stronger domain monotonicity statement. We also show that under special hypotheses we have inequalities in the opposite direction.
We prove a limit theorem for quantum stochastic differential equations with unbounded coefficients which extends the Trotter-Kato theorem for contraction semigroups. From this theorem, general results on the convergence of approximations and singular perturbations are obtained. The results are illustrated in several examples of physical interest.
140 - Thomas Haettel 2021
In this article, we show that the Goldman-Iwahori metric on the space of all norms on a fixed vector space satisfies the Helly property for balls. On the non-Archimedean side, we deduce that most classical Bruhat-Tits buildings may be endowed with a natural piecewise $ell^infty$ metric which is injective. We also prove that most classical semisimple groups over non-Archimedean local fields act properly and cocompactly on Helly graphs. This gives another proof of biautomaticity for their uniform lattices. On the Archimedean side, we deduce that most classical symmetric spaces of non-compact type may be endowed with a natural piecewise $ell^infty$ metric which is coarsely Helly. We also prove that most classical semisimple groups over Archimedean local fields act properly and cocompactly on injective metric spaces. The only exception is the special linear group: if $n geq 3$ and $mathbb{K}$ is a local field, we show that $operatorname{SL}(n,mathbb{K})$ does not act properly and coboundedly on an injective metric space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا