Do you want to publish a course? Click here

Understanding the nature of luminous red galaxies (LRGs): Connecting LRGs to central and satellite subhalos

583   0   0.0 ( 0 )
 Added by Masahiro Takada
 Publication date 2012
  fields Physics
and research's language is English
 Authors Shogo Masaki




Ask ChatGPT about the research

We develop a novel abundance matching method to construct a mock catalog of luminous red galaxies (LRGs) in SDSS, using catalogs of halos and subhalos in N-body simulations for a LCDM model. Motivated by observations suggesting that LRGs are passively-evolving, massive early-type galaxies with a typical age >5Gyr, we assume that simulated halos at z=2 (z2-halo) are progenitors for LRG-host subhalos observed today, and we label the most tightly bound particles in each progenitor z2-halo as LRG ``stars. We then identify the subhalos containing these stars to z=0.3 (SDSS redshift) in descending order of the masses of z2-halos until the comoving number density of the matched subhalos becomes comparable to the measured number density of SDSS LRGs, n=10^{-4} (h/Mpc)^3. Once the above prescription is determined, our only free parameter is the number density of halos identified at z=2 and this parameter is fixed to match the observed number density at z = 0.3. By tracing subsequent merging and assembly histories of each progenitor z2-halo, we can directly compute, from the mock catalog, the distributions of central and satellite LRGs and their internal motions in each host halo at z=0.3. While the SDSS LRGs are galaxies selected by the magnitude and color cuts from the SDSS images and are not necessarily a stellar-mass-selected sample, our mock catalog reproduces a host of SDSS measurements: the halo occupation distribution for central and satellite LRGs, the projected auto-correlation function of LRGs, the cross-correlation of LRGs with shapes of background galaxies (LRG-galaxy weak lensing), and the nonlinear redshift-space distortion effect, the Finger-of-God effect, in the angle-averaged redshift-space power spectrum.



rate research

Read More

98 - Chiaki Hikage 2012
Nonlinear redshift-space distortions, the Finger-of-God (FoG) effect, can complicate the interpretation of the galaxy power spectrum. Here, we demonstrate the method proposed by Hikage et al. (2012) to use complimentary observations to directly constrain this effect on the data. We use catalogs of Luminous Red Galaxies (LRGs) and photometric galaxies from the SDSS DR7 to measure the redshift-space power spectrum of LRGs, the cross-correlation of LRGs with the shapes of background photometric galaxies (galaxy-galaxy weak lensing), and the projected cross-correlation of LRGs with photometric galaxies having similar photometric redshifts to the LRG spectroscopic redshift. All of these measurements use a reconstructed halo field. While we use the position of each LRG for single LRG systems, we compare the measurements using different halo-center proxies for multiple-LRG systems (4.5 per cent of all the halos): the brightest LRG position (BLRG), the faintest LRG position (FLRG) and their arithmetical mean position (Mean), respectively, in each system. We find significant differences in the measured correlations of different centers, showing consistent off-centering effects in the three observables. By comparing the measurements with a halo model that treats the satellite photometric galaxies as being distributed according to a generalized NFW profile, we find that about 40 (70) per cent of BLRGs (FLRGs) are off-centered satellite galaxies in the multiple-LRG systems. The satellite LRGs have typical off-centering radius of about 400 kpc/h, and velocity dispersion of about 500 km/s in host halos with a mean mass of 1.6x10^14 Ms/h. We show that, if LRGs in the single LRG systems have similar offsets, the residual FoG contamination in the LRG power spectrum can be significant at k>0.1 h/Mpc, which may cause a bias in cosmological parameters such as the neutrino mass.
The magnification effect of gravitational lensing is a powerful probe of the distribution of matter in the universe, yet it is frequently overlooked due to the fact that its signal to noise is smaller than that of lensing shear. Because its systematic errors are quite different from those of shear, magnification is nevertheless an important approach with which to study the distribution of large scale structure. We present lensing mass profiles of spectroscopic luminous red galaxies (LRGs) and galaxy clusters determined through measurements of the weak lensing magnification of photometric LRGs in their background. We measure the change in detected galaxy counts as well as the increased average galaxy flux behind the lenses. In addition, we examine the average change in source color due to extinction by dust in the lenses. By simultaneously fitting these three probes we constrain the mass profiles and dust-to-mass ratios of the lenses in six bins of lens richness. For each richness bin we fit an NFW halo mass, brightest cluster galaxy (BCG) mass, second halo term, and dust-to-mass ratio. The resulting mass-richness relation is consistent with previous analyses of the catalogs, and limits on the dust-to-mass ratio in the lenses are in agreement with expectations. We explore the effects of including the (low signal-to-noise) flux magnification and reddening measurements in the analysis compared to using only the counts magnification data; the additional probes significantly improve the agreement between our measured mass-richness relation and previous results.
We present a weak lensing detection of filamentary structures in the cosmic web, combining data from the Kilo-Degree Survey, the Red Cluster Sequence Lensing Survey and the Canada-France-Hawaii Telescope Lensing Survey. The line connecting luminous red galaxies with a separation of $3 - 5, h^{-1}text{Mpc}$ is chosen as a proxy for the location of filaments. We measure the average weak lensing shear around $sim$11,000 candidate filaments selected in this way from the Sloan Digital Sky Survey. After nulling the shear induced by the dark matter haloes around each galaxy, we report a $3.4,sigma$ detection of an anisotropic shear signal from the matter that connects them. Adopting a filament density profile, motivated from $N$-body simulations, the average density at the centre of these filamentary structures is found to be $15 pm 4$ times the critical density.
We study the projected radial distribution of satellite galaxies around more than 28,000 Luminous Red Galaxies (LRGs) at 0.28<z<0.40 and trace the gravitational potential of LRG groups in the range 15<r/kpc<700. We show that at large radii the satellite number density profile is well fitted by a projected NFW profile with r_s~270 kpc and that at small radii this model underestimates the number of satellite galaxies. Utilizing the previously measured stellar light distribution of LRGs from deep imaging stacks we demonstrate that this small scale excess is consistent with a non-negligible baryonic mass contribution to the gravitational potential of massive groups and clusters. The combined NFW+scaled stellar profile provides an excellent fit to the satellite number density profile all the way from 15 kpc to 700 kpc. Dark matter dominates the total mass profile of LRG halos at r>25 kpc whereas baryons account for more than 50% of the mass at smaller radii. We calculate the total dark-to-baryonic mass ratio and show that it is consistent with measurements from weak lensing for environments dominated by massive early type galaxies. Finally, we divide the satellite galaxies in our sample into three luminosity bins and show that the satellite light profiles of all brightness levels are consistent with each other outside of roughly 25 kpc. At smaller radii we find evidence for a mild mass segregation with an increasing fraction of bright satellites close to the central LRG.
Using high resolution cosmological hydrodynamical simulations of Milky Way-massed disk galaxies, we demonstrate that supernovae feedback and tidal stripping lower the central masses of bright (-15 < M_V < -8) satellite galaxies. These simulations resolve high density regions, comparable to giant molecular clouds, where stars form. This resolution allows us to adopt a prescription for H_2 formation and destruction that ties star formation to the presence of shielded, molecular gas. Before infall, supernova feedback from the clumpy, bursty star formation captured by this physically motivated model leads to reduced dark matter (DM) densities and shallower inner density profiles in the massive satellite progenitors (Mvir > 10^9 Msun, Mstar > 10^7 Msun) compared to DM-only simulations. The progenitors of the lower mass satellites are unable to maintain bursty star formation histories, due to both heating at reionization and gas loss from initial star forming events, preserving the steep inner density profile predicted by DM-only simulations. After infall, tidal stripping acts to further reduce the central densities of the luminous satellites, particularly those that enter with cored dark matter halos, increasing the discrepancy in the central masses predicted by baryon+DM and DM-only simulations. We show that DM-only simulations, which neglect the baryonic effects described in this work, produce denser satellites with larger central velocities. We provide a simple correction to the central DM mass predicted for satellites by DM-only simulations. We conclude that DM-only simulations should be used with great caution when interpreting kinematic observations of the Milky Ways dwarf satellites.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا