Do you want to publish a course? Click here

The pion-pion scattering lengths from DIRAC

102   0   0.0 ( 0 )
 Added by Cibran Santamarina
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

The scattering lengths of a two pion system are the {it golden magnitudes} to test the QCD predictions in the low energy sector. The DIRAC (PS-212) experiment at CERN will obtain a particular combination of the S-wave isospin 0 and 2 scattering lengths by measuring the lifetime of pionium, the hydrogen-like $pi^+ pi^-$ atom. This measurement tests the accurate predictions of the Chiral Perturbation Theory. The most recent experimental results are presented.



rate research

Read More

In recent years, high-accuracy data for pionic hydrogen and deuterium have become the primary source of information on the pion-nucleon scattering lengths. Matching the experimental precision requires, in particular, the study of isospin-breaking corrections both in pion-nucleon and pion-deuteron scattering. We review the mechanisms that lead to the cancellation of potentially enhanced virtual-photon corrections in the pion-deuteron system, and discuss the subtleties regarding the definition of the pion-nucleon scattering lengths in the presence of electromagnetic interactions by comparing to nucleon-nucleon scattering. Based on the pi^{+/-} p channels we find for the virtual-photon-subtracted scattering lengths in the isospin basis a^{1/2}=(170.5 +/- 2.0) x 10^{-3} mpi^{-1} and a^{3/2}=(-86.5 +/- 1.8) x 10^{-3} mpi^{-1}.
With the aim of extracting the pion charge radius, we analyse extant precise pion+electron elastic scattering data on $Q^2 in [0.015,0.144],$GeV$^2$ using a method based on interpolation via continued fractions augmented by statistical sampling. The scheme avoids any assumptions on the form of function used for the representation of data and subsequent extrapolation onto $Q^2simeq 0$. Combining results obtained from the two available data sets, we obtain $r_pi = 0.640(7),$fm, a value $2.4,sigma$ below todays commonly quoted average. The tension may be relieved by collection and similar analysis of new precise data that densely cover a domain which reaches well below $Q^2 = 0.015,$GeV$^2$. Considering available kaon+electron elastic scattering data sets, our analysis reveals that they contain insufficient information to extract an objective result for the charged-kaon radius, $r_K$. New data with much improved precision, low-$Q^2$ reach and coverage are necessary before a sound result for $r_K$ can be recorded.
We present a report on a calculation of scattering length for I=2 $S$-wave two-pion system from two-pion wave function. Calculations are made with an RG-improved action for gluons and improved Wilson action for quarks at $a^{-1}=1.207(12) {rm GeV}$ on $16^3 times 80$, $20^3 times 80$ and $24^3 times 80$ lattices. We investigate the validity of necessary condition for application of Luschers formula through the wave function. We find that the condition is satisfied for lattice volumes $Lge 3.92 {rm fm}$ for the quark mass range $m_pi^2 = 0.273-0.736 {rm GeV}^2$. We also find that the scattering length can be extracted with a smaller statistical error from the wave function than with a time correlation function used in previous studies.
We calculate the two-pion wave function in the ground state of the I=2 $S$-wave system and find the interaction range between two pions, which allows us to examine the validity of the necessary condition for the finite-volume method for the scattering length proposed by Luscher. We work in the quenched approximation employing a renormalization group improved gauge action for gluons and an improved Wilson action for quarks at $1/a=1.207(12) {rm GeV}$ on $16^3 times 80$, $20^3 times 80$ and $24^3 times 80$ lattices. We conclude that the necessary condition is satisfied within the statistical errors for the lattice sizes $Lge 24$ ($3.92 {rm fm}$) when the quark mass is in the range that corresponds to $m_pi^2 = 0.273-0.736 {rm GeV}^2$. We obtain the scattering length with a smaller statistical error from the wave function than from the two-pion time correlator.
Results of a new two-particle correlation analysis of central Pb+Au collision data at 158 GeV per nucleon are presented. The emphasis is put on pion-proton correlations and on the dependence of the two-pion correlation radii on the azimuthal emission angle with respect to the reaction plane.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا