Do you want to publish a course? Click here

Backward pion-nucleon scattering

201   0   0.0 ( 0 )
 Added by Alexander Sibirtsev
 Publication date 2009
  fields
and research's language is English
 Authors F. Huang




Ask ChatGPT about the research

A global analysis of the world data on differential cross sections and polarization asymmetries of backward pion-nucleon scattering for invariant collision energies above 3 GeV is performed in a Regge model. Including the $N_alpha$, $N_gamma$, $Delta_delta$ and $Delta_beta$ trajectories, we reproduce both angular distributions and polarization data for small values of the Mandelstam variable $u$, in contrast to previous analyses. The model amplitude is used to obtain evidence for baryon resonances with mass below 3 GeV. Our analysis suggests a $G_{39}$ resonance with a mass of 2.83 GeV as member of the $Delta_{beta}$ trajectory from the corresponding Chew-Frautschi plot.



rate research

Read More

In recent years, high-accuracy data for pionic hydrogen and deuterium have become the primary source of information on the pion-nucleon scattering lengths. Matching the experimental precision requires, in particular, the study of isospin-breaking corrections both in pion-nucleon and pion-deuteron scattering. We review the mechanisms that lead to the cancellation of potentially enhanced virtual-photon corrections in the pion-deuteron system, and discuss the subtleties regarding the definition of the pion-nucleon scattering lengths in the presence of electromagnetic interactions by comparing to nucleon-nucleon scattering. Based on the pi^{+/-} p channels we find for the virtual-photon-subtracted scattering lengths in the isospin basis a^{1/2}=(170.5 +/- 2.0) x 10^{-3} mpi^{-1} and a^{3/2}=(-86.5 +/- 1.8) x 10^{-3} mpi^{-1}.
We present a simple description of pion-nucleon ($pi N$) scattering taking into account the full complexity of pion absorption and creation on the nucleon. To do this we solve Dyson-Schwinger equations within the framework of Time-Ordered Perturbation Theory. This enables us to construct partial wave separable $ pi N$ t matrices that can be useful in models of nuclear processes involving fully dressed nucleons. At the same time, our approach demonstrates features of Quantum Field Theory, like particle dressing, renormalisation, and the use of Dyson-Schwinger equations, in a non-relativistic context that is maximally close to that of Quantum Mechanics. For this reason, this article may also be of pedagogical interest.
86 - L. Canton , G. Pisent 2001
We report on recent results obtained by the above collaboration on the collision processes involving three nucleons, where we pay particular attention on the dynamical role of the pion. After discussing the case at intermediate energies, where real pions can be produced and detected, we have considered the case at lower energies, where the pions being exchanged are virtual. The study has revealed the presence of some new pion-exchange mechanisms, which leads to a new three-nucleon force of tensor structure. Recently, the effect of this tensor three-nucleon force to the spin observables for neutron-deuteron scattering at low energy has been analyzed, and will be briefly reviewed.
Recent measurements of spin-rotation parameters in elastic $pi^+ p$ scattering are in marked disagreement with predictions of the Carnegie-Mellon$-$Berkeley and Karlsruhe-Helsinki analyses. Using the method of Barrelet, we show how this discrepancy can be removed. We then show how this Barrelet transformation alters the partial-wave amplitudes. The effect of unitarity and analyticity constraints is also considered.
135 - Vadim Baru 2009
We report about the recent results for s- and p-wave pion production in NN -> NNpi within effective field theory and discuss how the charge symmetry breaking in pn -> d pi^0 can be used to extract the strong contribution to the neutron-proton mass difference.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا