Do you want to publish a course? Click here

Inverse Compton X-ray halos around high-z radio galaxies: A feedback mechanism powered by far-infrared starbursts or the CMB?

126   0   0.0 ( 0 )
 Added by Ian Smail
 Publication date 2012
  fields Physics
and research's language is English
 Authors Ian Smail




Ask ChatGPT about the research

We report the detection of extended X-ray emission around two powerful high-z radio galaxies (HzRGs) at z~3.6 (4C03.24 & 4C19.71) and use these to investigate the origin of extended, Inverse Compton (IC) powered X-ray halos at high z. The halos have X-ray luminosities of Lx~3e44 erg/s and sizes of ~60kpc. Their morphologies are broadly similar to the ~60-kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either CMB or FIR photons from the dust-obscured starbursts in these galaxies. These observations double the number of z>3 HzRGs with X-ray detected IC halos. We compare the IC X-ray to radio luminosity ratios for these new detections to the two previously detected z~3.8 HzRGs. Given the similar redshifts, we would expect comparable X-ray IC luminosities if CMB mm photons are the seed field for the IC emission. Instead the two z~3.6 HzRGs, which are ~4x fainter in the FIR, also have ~4x fainter X-ray IC emission. Including a further six z>2 radio sources with IC X-ray halos from the literature, we suggest that in the more compact (lobe sizes <100-200kpc), majority of radio sources, the bulk of the IC emission may be driven by scattering of locally produced FIR photons from luminous, dust-obscured starbursts within these galaxies, rather than CMB photons. The resulting X-ray emission can ionise the gas on ~100-200-kpc scales around these systems and thus form their extended Ly-alpha emission line halos. The starburst and AGN activity in these galaxies are thus combining to produce an effective and wide-spread feedback process, acting on the long-term gas reservoir for the galaxy. If episodic radio activity and co-eval starbursts are common in massive, high-z galaxies, then this IC-feedback mechanism may affect the star-formation histories of massive galaxies. [Abridged]



rate research

Read More

We present a definitive assessment of the role of Inverse Compton scattering of Cosmic Microwave Background photons (IC/CMB) in the context of radio galaxies. Owing to the steep increase of the CMB radiation energy density, IC/CMB is supposed to become progressively more important with respect to radio synchrotron cooling as the redshift increases. For typical energies at play, this process will up-scatter the CMB photons into the X-ray band, and is thus expected to yield a redshift-dependent, concurrent X-ray brightening and radio dimming of the jet-powered structures. Here we show how a conclusive proof of this effect hinges on high-resolution imaging data in which the extended lobes can be distinguished from the compact hot spots where synchrotron-self-Compton dominates the X-ray emission regardless of redshift. We analyze Chandra and Very Large Array data of 11 radio galaxies between 1.3<z<4.3, and demonstrate that the emission from their lobes is fully consistent with the expectations from IC/CMB in equipartition. Once the dependence on size and radio luminosity are properly accounted for, the measured lobe X-ray luminosities bear the characteristic (1+z)**4 proportionality expected of a CMB seed radiation field. Whereas this effect can effectively quench the (rest-frame) GHz radio emission from z>3 radio galaxies below <1 mJy, IC/CMB alone can not be responsible for a deficit in high-z, radio-loud AGN if--as we argue--such AGN typically have bright, compact hot spots.
We present spectroscopic observations for a sample of 36 Herschel-SPIRE 250-500um selected galaxies (HSGs) at 2<z<5 from the Herschel Multi-tiered Extragalactic Survey (HerMES). Redshifts are confirmed as part of a large redshift survey of Herschel-SPIRE-selected sources covering ~0.93deg^2 in six extragalactic legacy fields. Observations were taken with the Keck I Low Resolution Imaging Spectrometer (LRIS) and the Keck II DEep Imaging Multi-Object Spectrograph (DEIMOS). Precise astrometry, needed for spectroscopic follow-up, is determined by identification of counterparts at 24um or 1.4GHz using a cross-identification likelihood matching method. Individual source luminosities range from log(L_IR/Lsun)=12.5-13.6 (corresponding to star formation rates 500-9000Msun/yr, assuming a Salpeter IMF), constituting some of the most intrinsically luminous, distant infrared galaxies yet discovered. We present both individual and composite rest-frame ultraviolet spectra and infrared spectral energy distributions (SEDs). The selection of these HSGs is reproducible and well characterized across large areas of sky in contrast to most z>2 HyLIRGs in the literature which are detected serendipitously or via tailored surveys searching only for high-z HyLIRGs; therefore, we can place lower limits on the contribution of HSGs to the cosmic star formation rate density at (7+-2)x10^(-3)Msun/yr h^3Mpc^(-3) at z~2.5, which is >10% of the estimated total star formation rate density (SFRD) of the Universe from optical surveys. The contribution at z~4 has a lower limit of 3x10^(-3)Msun/yr h^3 Mpc^(-3), ~>20% of the estimated total SFRD. This highlights the importance of extremely infrared-luminous galaxies with high star formation rates to the build-up of stellar mass, even at the earliest epochs.
213 - Andrew W. Zirm 2009
We have obtained the first constraints on extended Ly-alpha emission at z ~ 1 in a sample of five radio galaxies. We detect Ly-alpha emission from four of the five galaxies. The Ly-alpha luminosities range from 0.1 - 4 times 10^43 erg/s and are much smaller than those observed for halos around higher redshift radio galaxies. If the z ~ 1 radio galaxies are the descendents the z >~ 2 radio galaxies, then their Ly-alpha luminosities evolve strongly with redshift as ~(1+z)^5. There do not appear to be strong correlations between other parameters, such as radio power, suggesting that this observed evolution is real and not an observational artifact or secondary correlation. We speculate that this evolution of luminous halos may be due to gas depletion (as gas cools, settles, and forms stars) accompanied by an overall rise in the mean gas temperature and a decrease in specific star-formation rate in and around these massive galaxies.
120 - F. Boone , D. Schaerer , R. Pello 2011
The spectral energy distributions (SED) of dusty galaxies at intermediate redshift may look similar to very high redshift galaxies in the optical/near infrared (NIR) domain. This can lead to the contamination of high redshift galaxy searches based on broad band optical/NIR photometry by lower redshift dusty galaxies as both kind of galaxies cannot be distinguished. The contamination rate could be as high as 50%. {This work shows how the far infrared (FIR) domain can help to recognize likely low-z interlopers in an optical/NIR search for high-z galaxies.} We analyse the FIR SEDs of two galaxies proposed as very high redshift ($z>7$) dropout candidates based on deep Hawk-I/VLT observations. The FIR SEDs are sampled with PACS/Herschel at 100 and 160,$mu$m, with SPIRE/Herschel at 250, 350 and 500,$mu$m and with LABOCA/APEX at 870,$mu$m. We find that redshifts $>7$ would imply extreme FIR SEDs (with dust temperatures $>100$,K and FIR luminosities $>10^{13}$,$L_{odot}$). At z$sim$2, instead, the SEDs of both sources would be compatible with that of typical ULIRGs/SMGs. Considering all the data available for these sources from visible to FIR we re-estimate the redshifts and we find $zsim$1.6--2.5. Due to the strong spectral breaks observed in these galaxies, standard templates from the literature fail to reproduce the visible-near IR part of the SEDs even when additional extinction is included. These sources resemble strongly dust obscured galaxies selected in Spitzer observations with extreme visible-to-FIR colors, and the galaxy GN10 at $z=4$. Galaxies with similar SEDs could contaminate other high redshift surveys.
We study the inverse Compton scattering of the CMB photons off nonthermal high-energy electrons. In the previous study, assuming the power-law distribution for electrons, we derived the analytic expression for the spectral intensity function $I(omega)$ in the Thomson approximation, which was applicable up to the photon energies of $omega <$ O(GeV). In the present paper, we extend the previous work to higher photon energies of $omega >$ O(GeV) by taking into account the terms dropped in the Thomson approximation, i.e., the Klein-Nishina formula. The analytic expression for $I(omega)$ is derived with the Klein-Nishina formula. It is shown that $I(omega)$ has a knee structure at $omega =$ O(PeV). The knee, if exists, should be accessible with gamma-ray observatories such as Fermi-LAT. We propose simple analytical formulae for $I(omega)$ which are applicable to wide photon energies from Thomson region to extreme Klein-Nishina region.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا