Do you want to publish a course? Click here

Knee structure in high-energy inverse Compton scattering of CMB photons

371   0   0.0 ( 0 )
 Added by Satoshi Nozawa
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the inverse Compton scattering of the CMB photons off nonthermal high-energy electrons. In the previous study, assuming the power-law distribution for electrons, we derived the analytic expression for the spectral intensity function $I(omega)$ in the Thomson approximation, which was applicable up to the photon energies of $omega <$ O(GeV). In the present paper, we extend the previous work to higher photon energies of $omega >$ O(GeV) by taking into account the terms dropped in the Thomson approximation, i.e., the Klein-Nishina formula. The analytic expression for $I(omega)$ is derived with the Klein-Nishina formula. It is shown that $I(omega)$ has a knee structure at $omega =$ O(PeV). The knee, if exists, should be accessible with gamma-ray observatories such as Fermi-LAT. We propose simple analytical formulae for $I(omega)$ which are applicable to wide photon energies from Thomson region to extreme Klein-Nishina region.



rate research

Read More

Based upon the rate equations for the photon distribution function obtained in the previous paper, we study the inverse Compton scattering process for high-energy nonthermal electrons. Assuming the power-law electron distribution, we find a scaling law in the probability distribution function P_1(s), where the peak height and peak position depend only on the power index parameter. We solved the rate equation analytically. It is found that the spectral intensity function also has the scaling law, where the peak height and peak position depend only on the power index parameter. The present study will be particularly important to the analysis of the X-ray and gamma-ray emission models from various astrophysical objects such as radio galaxies and supernova remnants.
We study the inverse Compton scattering of the CMB photons off high-energy nonthermal electrons. We extend the formalism obtained by the previous paper to the case where the electrons have non-zero bulk motions with respect to the CMB frame. Assuming the power-law electron distribution, we find the same scaling law for the probability distribution function P_{1,K}(s) as P_{1}(s) which corresponds to the zero bulk motions, where the peak height and peak position depend only on the power-index parameter. We solved the rate equation analytically. It is found that the spectral intensity function also has the same scaling law. The effect of the bulk motions to the spectral intensity function is found to be small. The present study will be applicable to the analysis of the X-ray and gamma-ray emission models from various astrophysical objects with non-zero bulk motions such as radio galaxies and astrophysical jets.
Repeated Compton scattering of photons with thermal electrons is one of the fundamental processes at work in many astrophysical plasma. Solving the exact evolution equations is hard and one common simplification is based on Fokker-Planck (FP) approximations of the Compton collision term. Here we carry out a detailed numerical comparison of several FP approaches with the exact scattering kernel solution for a range of test problems assuming isotropic media and thermal electrons at various temperatures. The Kompaneets equation, being one of the most widely used FP approximations, fails to account for Klein-Nishina corrections and enhanced Doppler boosts and recoil at high energies. These can be accounted for with an alternative FP approach based on the exact first and second moments of the scattering kernel. As demonstrated here, the latter approach works very well in dilute media, but inherently fails to reproduce the correct equilibrium solution in the limit of many scattering. Conditions for the applicability of the FP approximations are clarified, overall showing that the Kompaneets equation provides the most robust approximation to the full problem, even if inaccurate in many cases. We close our numerical analysis by briefly illustrating the solutions for the spectral distortions of the cosmic microwave background (CMB) after photon injection at redshift $zlesssim 10^5$, when double Compton and Bremsstrahlung emission can be omitted. We demonstrate that the exact treatment using the scattering kernel computed with {tt CSpack} is often needed. This work should provide an important step towards accurate computations of the CMB spectral distortions from high-energy particle cascades.
The Fermi-LAT survey provides a large sample of blazars selected on the strength of their inverse Compton emission. We cross-correlate the first Fermi-LAT catalogue with the CRATES radio catalogue and use this sample to investigate whether blazar gamma-ray luminosities are influenced by the availability of external photons to be up-scattered. Using the 8.4 GHz flux densities of their compact radio cores as a proxy for their jet power, we calculate their Compton Efficiency parameters, which measure the ability of jets to convert power in the form of ultra-relativistic electrons into Compton gamma-rays. We find no clear differences in Compton efficiencies between BL Lac objects and FSRQs and no anti-correlation between Compton efficiency and synchrotron peak frequency. This suggests that the scattering of external photons is energetically unimportant compared to the synchrotron self-Compton process. These results contradict the predictions of the blazar sequence.
The recent detection of blazar 3C279 by MAGIC has confirmed previous indications by H.E.S.S. that the Universe is more transparent to very-high-energy gamma rays than previously thought. We show that this fact can be reconciled with standard blazar emission models provided photon oscillations into a veri light Axion-Like Particle occur in extragalactic magnetic fields. A quantitative estimate of this effect explains the observed spectrum of 3C279. Our prediction can be tested in the near future by the satellite-borne GLAST detector as well as by the ground-based Imaging Atmospheric Cherenkov Telescpoes H.E.S.S., MAGIC, CANGAROO III, VERITAS and by the Extensive Air Shower arrays ARGO-YBJ and MILAGRO.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا