Generalized relational theories with null values in the sense of Reiter are first-order theories that provide a semantics for relational databases with incomplete information. In this paper we show that any such theory can be turned into an equivalent logic program, so that models of the theory can be generated using computational methods of answer set programming. As a step towards this goal, we develop a general method for calculating stable models under the domain closure assumption but without the unique name assumption.
In this paper, we explore the issue of inconsistency handling over prioritized knowledge bases (KBs), which consist of an ontology, a set of facts, and a priority relation between conflicting facts. In the database setting, a closely related scenario has been studied and led to the definition of three different notions of optimal repairs (global, Pareto, and completion) of a prioritized inconsistent database. After transferring the notions of globally-, Pareto- and completion-optimal repairs to our setting, we study the data complexity of the core reasoning tasks: query entailment under inconsistency-tolerant semantics based upon optimal repairs, existence of a unique optimal repair, and enumeration of all optimal repairs. Our results provide a nearly complete picture of the data complexity of these tasks for ontologies formulated in common DL-Lite dialects. The second contribution of our work is to clarify the relationship between optimal repairs and different notions of extensions for (set-based) argumentation frameworks. Among our results, we show that Pareto-optimal repairs correspond precisely to stable extensions (and often also to preferred extensions), and we propose a novel semantics for prioritized KBs which is inspired by grounded extensions and enjoys favourable computational properties. Our study also yields some results of independent interest concerning preference-based argumentation frameworks.
In this paper we briefly summarize the contents of Manzonettos PhD thesis which concerns denotational semantics and equational/order theories of the pure untyped lambda-calculus. The main research achievements include: (i) a general construction of lambda-models from reflexive objects in (possibly non-well-pointed) categories; (ii) a Stone-style representation theorem for combinatory algebras; (iii) a proof that no effective lambda-model can have lambda-beta or lambda-beta-eta as its equational theory (this can be seen as a partial answer to an open problem introduced by Honsell-Ronchi Della Rocca in 1984).
In this paper, we study how graph transformations based on sesqui-pushout rewriting can be reversed and how the composition of rewrites can be constructed. We illustrate how such reversibility and composition can be used to design an audit trail system for individual graphs and graph hierarchies. This provides us with a compact way to maintain the history of updates of an object, including its multip
Two-way regular path queries (2RPQs) have received increased attention recently due to their ability to relate pairs of objects by flexibly navigating graph-structured data. They are present in property paths in SPARQL 1.1, the new standard RDF query language, and in the XML query language XPath. In line with XPath, we consider the extension of 2RPQs with nesting, which allows one to require that objects along a path satisfy complex conditions, in turn expressed through (nested) 2RPQs. We study the computational complexity of answering nested 2RPQs and conjunctions thereof (CN2RPQs) in the presence of domain knowledge expressed in description logics (DLs). We establish tight complexity bounds in data and combined complexity for a variety of DLs, ranging from lightweight DLs (DL-Lite, EL) up to highly expressive ones. Interestingly, we are able to show that adding nesting to (C)2RPQs does not affect worst-case data complexity of query answering for any of the considered DLs. However, in the case of lightweight DLs, adding nesting to 2RPQs leads to a surprising jump in combined complexity, from P-complete to Exp-complete.
Sesqui-pushout (SqPO) rewriting along non-linear rules and for monic matches is well-known to permit the modeling of fusing and cloning of vertices and edges, yet to date, no construction of a suitable concurrency theorem was available. The lack of such a theorem, in turn, rendered compositional reasoning for such rewriting systems largely infeasible. We develop in this paper a suitable concurrency theorem for non-linear SqPO-rewriting in categories that are quasi-topoi (subsuming the example of adhesive categories) and with matches required to be regular monomorphisms of the given category. Our construction reveals an interesting backpropagation effect in computing rule compositions. We derive in addition a concurrency theorem for non-linear double pushout (DPO) rewriting in rm-adhesive categories. Our results open non-linear SqPO and DPO semantics to the rich static analysis techniques available from concurrency, rule algebra and tracelet theory.