Do you want to publish a course? Click here

A companion as the cause of latitude-dependent effects in the wind of Eta Carinae

289   0   0.0 ( 0 )
 Added by Jose H. Groh
 Publication date 2012
  fields Physics
and research's language is English
 Authors Jose H. Groh




Ask ChatGPT about the research

We analyze spatially resolved spectroscopic observations of the Eta Carinae binary system obtained with HST/STIS. Eta Car is enshrouded by the dusty Homunculus nebula, which scatters light emitted by the central binary and provides a unique opportunity to study a massive binary system from different vantage points. We investigate the latitudinal and azimuthal dependence of H$alpha$ line profiles caused by the presence of a wind-wind collision (WWC) cavity created by the companion star. Using two-dimensional radiative transfer models, we find that the wind cavity can qualitatively explain the observed line profiles around apastron. Regions of the Homunculus which scatter light that propagated through the WWC cavity show weaker or no H alpha absorption. Regions scattering light that propagated through a significant portion of the primary wind show stronger P Cygni absorption. Our models overestimate the H alpha absorption formed in the primary wind, which we attribute to photoionization by the companion, not presently included in the models. We can qualitatively explain the latitudinal changes that occur during periastron, shedding light on the nature of Eta Cars spectroscopic events. Our models support the idea that during the brief period of time around periastron when the primary wind flows unimpeded toward the observer, H alpha absorption occurs in directions toward the central object and Homunculus SE pole, but not toward equatorial regions close to the Weigelt blobs. We suggest that observed latitudinal and azimuthal variations are dominated by the companion star via the WWC cavity, rather than by rapid rotation of the primary star.



rate research

Read More

A series of three HST/STIS spectroscopic mappings, spaced approximately one year apart, reveal three partial arcs in [Fe II] and [Ni II] emissions moving outward from eta Carinae. We identify these arcs with the shell-like structures, seen in the 3D hydrodynamical simulations, formed by compression of the primary wind by the secondary wind during periastron passages.
522 - M. Teodoro 2011
The periodic spectroscopic events in eta Carinae are now well established and occur near the periastron passage of two massive stars in a very eccentric orbit. Several mechanisms have been proposed to explain the variations of different spectral features, such as an eclipse by the wind-wind collision boundary, a shell ejection from the primary star or accretion of its wind onto the secondary. All of them have problems explaining all the observed phenomena. To better understand the nature of the cyclic events, we performed a dense monitoring of eta Carinae with 5 Southern telescopes during the 2009 low excitation event, resulting in a set of data of unprecedented quality and sampling. The intrinsic luminosity of the He II 4686 emission line (L~310 Lsun) just before periastron reveals the presence of a very luminous transient source of extreme UV radiation emitted in the wind-wind collision (WWC) region. Clumps in the primarys wind probably explain the flare-like behavior of both the X-ray and He II 4686 light-curves. After a short-lived minimum, He II 4686 emission rises again to a ne
366 - J. M. Pittard Leeds , UK 2002
We present X-ray spectral fits to a recently obtained Chandra grating spectrum of Eta Carinae, one of the most massive and powerful stars in the Galaxy and which is strongly suspected to be a colliding wind binary system. Hydrodynamic models of colliding winds are used to generate synthetic X-ray spectra for a range of mass-loss rates and wind velocities. They are then fitted against newly acquired Chandra grating data. We find that due to the low velocity of the primary wind (~500 km/s), most of the observed X-ray emission appears to arise from the shocked wind of the companion star. We use the duration of the lightcurve minimum to fix the wind momentum ratio at 0.2. We are then able to obtain a good fit to the data by varying the mass-loss rate of the companion and the terminal velocity of its wind. We find that Mdot ~ 1e-5 Msol/yr and v ~ 3000 km/s. With observationally determined values of ~500-700 km/s for the velocity of the primary wind, our fit implies a primary mass-loss rate of Mdot ~ 2.5e-4 Msol/yr. This value is smaller than commonly inferred, although we note that a lower mass-loss rate can reduce some of the problems noted by Hillier et al. (2001) when a value as high as 1e-3 Msol/yr is used. The wind parameters of the companion are indicative of a massive star which may or may not be evolved. The line strengths appear to show slightly sub-solar abundances, although this needs further confirmation. Based on the over-estimation of the X-ray line strengths in our model, and re-interpretation of the HST/FOS results, it appears that the homunculus nebula was produced by the primary star.
During the years 1838-1858, the very massive star {eta} Carinae became the prototype supernova impostor: it released nearly as much light as a supernova explosion and shed an impressive amount of mass, but survived as a star.1 Based on a light-echo spectrum of that event, Rest et al.2 conclude that a new physical mechanism is required to explain it, because the gas outflow appears cooler than theoretical expectations. Here we note that (1) theory predicted a substantially lower temperature than they quoted, and (2) their inferred observational value is quite uncertain. Therefore, analyses so far do not reveal any significant contradiction between the observed spectrum and most previous discussions of the Great Eruption and its physics.
Classical Cepheids (CCs) are at the heart of the empirical extragalactic distance ladder. Milky Way CCs are the only stars of this class accessible to trigonometric parallax measurements. Until recently, the most accurate trigonometric parallaxes of Milky Way CCs were the HST/FGS measurements collected by Benedict et al. (2002, 2007) and HST/WFC3 measurements by Riess et al. (2018). Unfortunately, the second Gaia data release (GDR2) has not yet delivered reliable parallaxes for Galactic CCs, failing to replace the HST as the foundation of the Galactic calibrations of the Leavitt law. We aim at calibrating independently the Leavitt law of Milky Way CCs based on the GDR2 catalog of trigonometric parallaxes. As a proxy for the parallaxes of a sample of 23 Galactic CCs, we adopt the GDR2 parallaxes of their spatially resolved companions. As the latter are unsaturated, photometrically stable stars, this novel approach allows us to bypass the GDR2 bias on the parallax of the CCs that is induced by saturation and variability. We present new Galactic calibrations of the Leavitt law in the J, H, K, V, Wesenheit WH and Wesenheit WVK bands based on the GDR2 parallaxes of the CC companions. We show that the adopted value of the zero point of the GDR2 parallaxes, within a reasonable range, has a limited impact on our Leavitt law calibration.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا